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1. Introduction

The area of numerical analysis provides increased attention to mathematical derivatives, both in terms
of descriptive and analytical methods to obtain numerical solutions to mathematical problems. The
interest of numerical analysis method is the constructive method that showed how to develop the
solution of mathematical problems in this case discussing the system of linear equations. Given a
matrix A € R,«, and x,b € R is a linear system with symbolized as Ax = b. A collection of linear
systems is known as a system of linear equations. In order to obtain the solution of linear equations,
the direct method and the iterative method are two methods. The direct method is a method with less
round-off errors, so it gives the exact solution in a limited number of basic row operations. In general,
the direct method works with a number of steps and then through operations the exact solution is
given. The numerical solution of a system of linear equations concluded that the direct method is
inappropriate for solving a large number of equations in a system [1], particularly when the coefficient
matrices are sparse, i.e. when most of the elements in the matrix are zero, in contrast to the LU
decomposition method.
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The exact solution of this method depends on rounding that is inefficient when compared to
the iteration method which uses the tolerance value as an operating input parameter thus the solution
of steps to improve the accuracy of the solution obtained after the computing process. In certain cases,
especially in large systems, the iteration method is more suitable for used [2]. However, the iteration
method requires smaller storage space if it has sparse properties in the matrix coefficients [3]. There
are two types of matrices based on the linear system, namely dense and sparse. Dense matrices have
few zeros, and the order of the matrice tends be relatively small. Sparse matrices consist of a few non-
zero elements. The sparse linear system is derived from the concept of the finite difference method for
solving a system of second-order ordinary differential equations. Several researches widely used sparse
matrices, in various application such as speech recognition, computer vision [4], [5], artificial neural
networs [6],[7], deep learning workloads[8], biology [9], chemistry [10], etc. The solution of linear
sparse equation system, direct method and iteration method can be used, such as Jacobi iteration
method, Gauss Seidel and also Successice Over Relaxation (SOR) method [11], [12].

Direct methods have a finite set of procedures that give an exact solution. They are robust but
difficult to parallelise, consume memory and also more cost. Instead, the iterative methods have a
sequence of approximation solutions, starting with an initial guess and improving the solution until it
converges to close an exact solution. Several studies developed sparse matrices in evaluating the
storage performance of Compressed Sparse Row (CSR)[13] and Block Compressed Sparse Row (BCSR)
in Message Passing Interface (MPI) [14]. While [15] uses a sparse matrix divided into two segmentations
based on the regularity of memory access patterns, where each segmentation is stored in a format that
matches its memory access pattern. to build a predictive model to automatically determine the
partition threshold on a per basis matrice. In this paper extended version of our earlier work [16] which
iteration methods focusing on Gauss-Seidel method, and SOR as methods used in solving the solution
of sparse matrices analyzes the convergence criteria for both iteration methods. This study is expected
to be one of the references in determining the solution of sparse linear systems with large matrices.
The outline of this paper is as follows: Section 2 contains a comprehensive coverage of the methods
used in this research, Gauss-Seidel and SOR. Section 3 discusses the analysis of the convergence results
of Gauss-Seidel and SOR and discussion with numerical example. Section 4 is the conclusion.

2. Methods

In this section using iterative method with Gauss Seidell and SOR method. The derivation of the
formulation is described and the convergence properties of the two formulas are analyzed. In this
study, refinement gauss seidel (RGS) is introduced, which is an expansion of gauss seidel reduction.
Improved refinement gauss-seidel (IRGS) is a reduction expansion of the refinement gauss-seidel
(RGS) formulation.

2.1 Gauss-Seidel (GS)

The utilization of Gauss-Seidel methods conducted by [17] describes the implementation and
performance of an efficient parallel Gauss-Seidel algorithm that developed for irregular and sparse
matrices from power system applications. This algorithm is inherently sequential. However, given the
special ordering of sparse matrices, it is possible to eliminate many of the data dependencies caused
by priorities in the calculations. A method of two-part matrix ordering was developed - first
partitioning the matrix into diagonally bounded blocks using a dioptic technique and then performing
data coloring on the last diagonal block using a graph coloring technique. In addition, [18] used
iterative solving for sparse linear equations by symmetric Gauss-Seidel method to propose
Computational Fluid Dynamics (CFD). The method is proposed to solve the right handed equations in
incompressible fluid flow solver. Following [19], consider sparse linear system form Au = f, where f is
a given n-dimensional real vector, u is a vector to be determined, and A4 = (a;;), is a nonsingular real
matrices of n —order. Given —E as upper and —F lower triangular of 4 [20], then M =D —E and N =
F
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Au=f ()
Becomes Du + Au = Du+ f (2)
Consider by u®**Y = (D — E)"*Fu* + (D — E)™f (3)
Equation (3) resolved forward substitution as follows:

u[k+1] — M—lNu[k] + M—lf (4)

Consider of splitting of 4 as follows A = D — E — F; with substitution split of 4, obtained Du + (D —
E — F)u = Du + f. By modifying (1) as follows:
u=u+(D-E)'(f - Aw (5)
In an iterative, u on the left and right sides of equation (4) can be derived:
ul+d) = g+ 4 (p — F)71(f — Au®*Y) extend this formulation as follows:

u®*D = (D — )~ 'Fi®**Y + (D — E)'f (6)
By rearranging and simplifying eq. (6) yields
uk*tD = (D — E)'F)*>u* + (I + (D — E)"'F)(D — E)~'f, substitution (6) Also we get

uD = (D = E) P + [+ (D —E)'F) + (D — E)'F)*](D — E)'f (7)
Equation (7) improve refinement Gauss Seidel. Then, by rearrange and simply expanding eq. (7), we
get:

wk*D = (0 = D)+ [+ (0= EY P + (D= E) PP + (@ - D PO - B ()
Equation (8) is second improve refinement Gauss Seidel. If we do similar to-m‘" for general we get the
form of m —refinement of Gauss-Seidel derivation.

Convergence Gauss-Seidel (GS)

Theorem 1. Let A is strictly diagonally dominant (SDD) matrices, Gauss-Seidel converges for all u°.

Proof: The iteration converges if satisfy: p(I — (D — E)"'A) < 1 (9)
Let A is a eigen value, I — (D — E)™'A then,
(D — L)u—Au=AD — E)u (10)
=X QU =AY au, 1< i<n (12)
Then rearranged and simplify (11) and let for the absolute symbol given in the both side, as follows:
[Aag | < Z?:Hllaijllukl + 4] Z}jlaij“uﬂ (12)

Since u is eigenvector, u # 0. Consider ||ul|,, = 1. Used k such that |u,| = 1 and |uj| < 1forallj # k.
Hence:
Z:;‘l=i+1aij _ 2?:i+1|aij| _ Z?:i+1|‘1ij|
1Al < =gl T Ja]|=3T e TP T i-1 i-1 n
lagl-2izilag]  laul-Eioipqlay|-2i e+ Efoipalagl] (|aii|—2j=i+1|aij|—2j=1|aij|)+2j=i+1|aij|
Therefore, Gauss-Seidel converges for every initial predictor u(®.
Theorem 2. Let A is a strictly dominan diagonal (SDD) matrices, then improve refinement Gauss Seidel
converges for initial predictor u(®.
Proof. Let U is the exact solution . Since A is matrice SDD, Gauss-Seidel, and define Gauss Seidel
converges. Let 1®“*V converges to U. Such that, using norm in both of methods, as follows:
[[ul+® — u| < [|at*® — ul| + 10 = EYHI|(f — Aa™* V)| > v = Ul + (D = EY!IIIf — AUl
=0+ [I(D-E)'IIb-bll=0+0=0
Therefore u®**Yconverges to Uand p(((D — E)™*F)%) = (p((D — E)‘lF))3 <1
Such that Refine Gauss-Seidel converges.
Theorem 3. Define A as simmetry definite positive (SPD) matrices. Then Gauss Seidel convergen for
any initial approximation u(®.
Proof. Consider A= D — E — ET,with F = ET and A = AT then A then symetrical matrice. Such that
Bgs = (D — E)7ET. We will define that p(Bgg) < 1, with p = spectral radius.
Let be 1 is a eigen value of B;g and u is a vector eigen. Then (D — E) *ETu = Au = ETu = A(D — E)u.
Hence u?ETu = Auf (D — E)u, with u? = (u*)T.
It simplifies to:

<1 )
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wAu= {1 -Du"(D — E)u (14)
With transpose conjugate on both side of (14):

wAu=1-Du (DT —ENu (15)
From (14) and (15) obtained:

p((D—E)'FT) =p((D-E)'F) <1 (16)

Therefore, the Gauss Seidel method converges if matrices A is a symmetry positive definite matrice

(SPD).

Theorem 4. If A is matriks —-M, then iterative method Improve refinement Gauss Seidel (IRGS)

converges for every initial approximation (x)°.

Proof. If A is a M-matrice, then spectral radius Gauss Seidel less than 1. So p((D —E)™'F) <
L.p((D-E)'F)3) <1.

Such that improve refinement Gauss-Seidel converges.

Similarly way, for general refinement Gauss-Seidel converges (k + 1) times fast as Gauss-Seidel

method [21].

2.2 Succesive Overrelaxation (SOR)
The Successive Overrelaxation (SOR) method accelerates convergence better than Gauss-Seidel. SOR
is also useful for solving partial differential equation-based linear systems. SOR have the relaxation
value known as ¢. Splitting matrices A with the following equations:

A=¢D—@E—-@F+D-D (17)

By substituting equation (9) into (3), we obtain:
™ = (D~ 9E) (1 ~ @)D + ¢Flu™ + o(D — 9E)'f (18)
Similar to eq. (8), by following the similar method of rearranging and simplifying eq. (17) and eq.(18)

We Obtained: u®*+D = [(D — @E)™1[(1 — @)D + @E]'u® + [ + (D — L)"*((1 — 9)D + ¢F) +
[(D — 9E)™*(1 — @)D + @F]*|p(D — 9E) @b (19)

Equation (19) improve refinement-SOR. Then, by rearrange and simply expanding equation before we
get:

ul+D = [(D — pE) (1 — )D + <pE]]“u<k> +[I+D—-oL) (1 —¢)D+¢F)+[(D—pE) (1 -
@)D + oF1?|o(D — 9E) pb (20)

If we do similar to-m*" for general we get the form of m —refinement of SOR derivation.

Convergence Succesivve Overrelaxation (SOR)
Theorem 5. [22] If A € C™" is strictly diagonally dominant), then SOR method converges with boundary
O0<p<=<1
Proof: The Gauss-Seidel method, which is defined as matrices that are strictly diagonally dominant,
implies following

(k+1) [b - Z] 15U ](kH) i1 QiU k)] then we can formulate SOR with substitute
l

the relaxatition value ¢ as follows

u_(k+1) =(1- (k+1) _
L

Quk + % [b; — lau T QiU ;k)] else, it can be written as follows:

j
(k+1) =(1- (p)u(k) (k+1) (k+1) _ (k)) The relationship between u( )and
( )

u;¢ can be demonstrated. The SOR method's solution is a convex set for all values of 0 < ¢ <
1.
Let u**Vbe the (k + 1) approximation to the solution of (1) from SOR methods. Suppose u, is the
exact solution of linear system (1), then |[u®*D — ug|| = |[u®*D + o — pU)1(f — Au*D) —up|| <

+oxgs - =ul + o(ugs
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D —ug||||If — Au®* V||l — UYL - 0 then ||u®*+Y —ug|| - 0. Hence the refinement SOR
is converges. Similar way, it’s clearly shown that for the general refine converges (k + 1) times fast as

SOR method.

2.3 Numerical Example
Consider linear equation with has coefficient a strictly dominant diagonal (SDD) matrices and a

positive definite symmetry (SPD) matrices as follows:

6x1 + 2x1 + ZX3 = 5
le + 8x2 + 2X3 =6
le + 2x2 + 10x3 =7

For tolerance 107>, we will show the number of iteration through convergence rate, spectral radius,
and number of iterations of the Gauss Seidell and refine SOR methods.

Solution:
Tabel 1.
Numerical Result for Gauss-Seidel
0 Gauss -Seidel Refinement Gauss-Seidel Improve Refinement Gauss Seidel
X1 X2 X3 X1 X2 X3 X1 X2 X3
1 0.8333 0.5417 0.4250 0.5111 0.5160 0.4946 0.4965 0.5022 0.5003
2 0.5111 0.5160 0.4946 0.4992 0.5001 0.5001 0.5000 0.5000 0.5000
3 0.4965 0.5022 0.5003 0.5000 0.5000 0.5000
4 0.4992 0.5001 0.5001
5 0.4999 0.5000 0.5000
6 0.5000 0.5000 0.5000
Tabel 2.
Result of comparison spectral radius, iteration number
Method Gauss -Seidel RGS IRGS
Spectral Radius 0.1291 0.0167 0.0021
Rate convergence 2.0472 4.0923 6.1658,
Iteration Number 6 3 2

Spectral radius for SOR, RSOR, and IRSOR

Table 3.

) pSOR p RefineSOR p Improve SOR
0.2 0.8542 0,7296 0.6933
0.4 0.6947 0.4827 0.3353
0.6 0.6016 0.3620 0.2178
0.8 0.7767 0.6035 0.4686

1 0.1201 0.0167 0.0021
1.2 0.2535 0.0643 0.0163
1.4 0.4440 0.1972 0.0875
1.6 0.6328 0.4004 0.2534
1.8 0.8182 0.6695 0.5477
1.9 0.9096 0.8272 0.7525

Table 4.
Rate convergence for SOR, RSOR, and IRSOR

@ SOR RSOR IRSOR
0.2 0.1576 0,3153 0.3663
0.4 0.3643 0.7284 1.0927
0.6 0.5082 1.0161 1.5242
0.8 0.2527 0.5050 0.7580

1 2.0472 4.0923 6.16558
1.2 1.3724 2.7442 4.1166
1.4 0.8119 1.6235 2.4361
1.6 0.4576 0.9153 1.3728
1.8 0.2006 0.4012 0.6020
1.9 0.0948 0.1897 0.2844
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3. Result and Discussion

In section 2, the gauss-seidel and SOR iterative refinement method formulations and numerical case
is presented to calculate their performance. Using MATLAB gives the exact solution is o.5. Table 1
shows the solution of Gauss-Seidel method, refinement, and iterative refinement numerical results.
The results show that the Gauss seidel method requires 6 iterations to find the exact value. The
refinement Gauss-seidel formulation vyields from derivate form of ordinary Gauss-seidel, and
particularly for iterative refinement Gauss-seidel. The solution obtain for refinement Gauss-seidel is 5
iteration, and Iterative refinement is 2 iteration. This means that the performance of iterative
refinement method is faster than the two other methods. This is shown, from the number of iterations.
In terms of spectral radius, Gauss-seidel to its second derivative has decreased. However, contrary to
the rate of convergence which has increased as shown in table 2. This result is consistent with research
by [21], they solved a problem with a reduced number of iterations and faster rate of convergence than
previous methods. The SOR method is an extension of the Gauss-seidell method by adding a relaxation
parameter. In this case, the parameter values tested were [0.2,1.9]. Table. 3 presents the results of
spectral radius values using relaxation values (@) for SOR, SOR refinement, and improved SOR
refinement. In each SOR method, the spectral radius distance value is getting smaller, especially when
the relaxation value (¢) is given 1, which is 0.0021 in the spectral radius of the improved refinement
SOR method. A comparison of the spectral radius graph is shown in Figure 1.

Result Speciral radius for 50R , RS0R, and IRSOR

1,00 = SOR
== RSOR
IRSOR
075
€ 050
o
025
0,00
0,25 0.5 0.75 1 125 15 175

P
Figure 1. Comparison spectral radius SOR,RSOR,and IRSOR

A comparison of the number of iterations for the SOR, RSOR, and IRSOR methods is shown in figure
2. The optimum number of iterations in this case is located at a relaxation value (¢) of 1. The number
of iterations increases if the relaxation value (¢) gets closer to 2. However, the IRSOR method provides
the best performance by reducing the number of iterations compared to the performance of RSOR and
SOR.
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Comparison The number lteration SOR, RSOR IRSOR

300 - SOR

= RSOR

IRSOR
_ 200

£
3 100
0
025 0,50 0,75 1,00 1,25 1,50 1,75
.

Figure 2. Comparison Number Iteration of SOR,RSOR,and IRSOR

In terms of convergence rate, the optimum value is given at relaxation 1in IRSOR of 6.16558 as shown
in table 4. This shows that the IRSOR method gives the best performance in terms of convergence rate
and spectral radius. However, the relaxation value (¢) of that exceeded 1 has an impact on the number
of iterations increasing to approach the exact value. This research is limited to discussing performance
at the convergence rate and spectral radius. Future research is expected to be studied with a large rank
that affects a more complex sparse matrices. The relaxation value that gives the optimum approach
also gives a larger error value, so that in the next research it is studied with a stochastic approach to
get the optimum solution.

4. Conclusion

In this paper, Gauss-seidell and successive sverrelaxation (SOR) with their refinement and and improve
refinement for solving sparse matrice is studied. Sufficient conditions for convergence are given and
numerical experiments are considered to show the efficiency of the method. Sufficient conditions for
convergence and spectral radius are given and numerical experiments are considered to show the
efficiency of these methods. The main findings in this study, that Gauss seidel improvement refinement
gives optimum spectral radius and convergence rate. Similarly, the SOR improved refinement method
gives. Considering their performance, using parameters such as time to converge, number of iterations
required to converge and spectral radius level of accuracy. However, SOR works with relaxation values
so that it greatly affects the convergence rate and spectral radius results if given greater than 1.This
research is limited to discussing performance at the convergence rate and spectral radius. Future
research is expected to be studied with a large rank that affects a more complex sparse matrices. The
relaxation value that gives the optimum approach also gives a larger error value, so that in the next
research it is studied with a stochastic approach to get the optimum solution.
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