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 In this paper, systems of linear equations on sparse matrices investigated 
through modified improve method using Gauss-Seidel and successive 
overrelaxation (SOR) approach. Taking into adapted convergence rate on 
the Improve refinement Gauss-seidel outperformed the prior two Gauss-
Seidel methods in terms of rate of convergence and number of iterations 
required to solve the problem by applying a modified version of the Gauss-
Seidel approach. to observe the effectiveness of this method, the numerical 
example is given. The main findings in this study, that Gauss seidel 
improvement refinement gives optimum spectral radius and convergence 
rate. Similarly, the SOR improved refinement method gives. Considering 
their performance, using parameters such as time to converge, number of 
iterations required to converge and spectral radius level of accuracy. 
However, SOR works with relaxation values so that it greatly affects the 
convergence rate and spectral radius results if given greater than 1. 
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1. Introduction  

The area of numerical analysis provides increased attention to mathematical derivatives, both in terms 
of descriptive and analytical methods to obtain numerical solutions to mathematical problems. The 
interest of numerical analysis method is the constructive method that showed how to develop the 
solution of mathematical problems in this case discussing the system of linear equations. Given a 
matrix 𝐴 ∈  ℝ𝑛×𝑛 and 𝑥, 𝑏 ∈ ℝ is a linear system with symbolized as  𝐴𝑥 = 𝑏. A collection of linear 
systems is known as a system of linear equations. In order to obtain the solution of linear equations, 
the direct method and the iterative method are two methods.  The direct method is a method with less 
round-off errors, so it gives the exact solution in a limited number of basic row operations. In general, 
the direct method works with a number of steps and then through operations the exact solution is 
given. The  numerical solution of a system of linear equations concluded that the direct method is 
inappropriate for solving a large number of equations in a system [1], particularly when the coefficient 
matrices are sparse, i.e. when most of the elements in the matrix are zero, in contrast to the LU 
decomposition method. 

https://creativecommons.org/licenses/by-nc/4.0/
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The exact solution of this method depends on rounding that is inefficient when compared to 
the iteration method which uses the tolerance value as an operating input parameter thus the solution 
of steps to improve the accuracy of the solution obtained after the computing process. In certain cases, 
especially in large systems, the iteration method is more suitable for used [2]. However, the iteration 
method requires smaller storage space if it has sparse properties in the matrix coefficients [3]. There 
are two types of matrices based on the linear system, namely dense and sparse. Dense matrices have 
few zeros, and the order of the matrice tends be relatively small. Sparse matrices consist of a few non-
zero elements. The sparse linear system is derived from the concept of the finite difference method for 
solving a system of second-order ordinary differential equations. Several researches widely used sparse 
matrices, in various application such as speech recognition, computer vision [4], [5], artificial neural 
networs  [6],[7],  deep learning workloads[8], biology [9], chemistry [10], etc. The solution of linear 
sparse equation system, direct method and iteration method can be used, such as Jacobi iteration 
method, Gauss Seidel and also Successice Over Relaxation (SOR) method [11], [12].   

 Direct methods have a finite set of procedures that give an exact solution. They are robust but 
difficult to parallelise, consume memory and also more cost. Instead, the iterative methods have a 
sequence of approximation solutions, starting with an initial guess and improving the solution until it 
converges to close an exact solution. Several studies developed sparse matrices in evaluating the 
storage performance of Compressed Sparse Row (CSR)[13] and Block Compressed Sparse Row (BCSR) 
in Message Passing Interface (MPI) [14]. While [15] uses a sparse matrix divided into two segmentations 
based on the regularity of memory access patterns, where each segmentation is stored in a format that 
matches its memory access pattern. to build a predictive model to automatically determine the 
partition threshold on a per basis matrice.  In this paper extended version of our earlier work [16] which 
iteration methods focusing on Gauss-Seidel method, and SOR as methods used in solving the solution 
of sparse matrices analyzes the convergence criteria for both iteration methods.  This study is expected 
to be one of the references in determining the solution of sparse linear systems with large matrices. 
The outline of this paper is as follows: Section 2 contains a comprehensive coverage of the methods 
used in this research, Gauss-Seidel and SOR. Section 3 discusses the analysis of the convergence results 
of Gauss-Seidel and SOR and discussion with numerical example. Section 4 is the conclusion. 

2. Methods 

In this section using iterative method with Gauss Seidell and SOR method. The derivation of the 
formulation is described and the convergence properties of the two formulas are analyzed. In this 
study, refinement gauss seidel (RGS) is introduced, which is an expansion of gauss seidel reduction. 
Improved refinement gauss-seidel (IRGS) is a reduction expansion of the refinement gauss-seidel 

(RGS) formulation. 

2.1 Gauss-Seidel (GS) 
The utilization of Gauss-Seidel methods conducted by [17] describes the implementation and 
performance of an efficient parallel Gauss-Seidel algorithm that developed for irregular and sparse 
matrices from power system applications. This algorithm is inherently sequential.However, given the 
special ordering of sparse matrices, it is possible to eliminate many of the data dependencies caused 
by priorities in the calculations. A method of two-part matrix ordering was developed - first 
partitioning the matrix into diagonally bounded blocks using a dioptic technique and then performing 
data coloring on the last diagonal block using a graph coloring technique.  In addition, [18] used 
iterative solving for sparse linear equations by symmetric Gauss-Seidel method to propose 
Computational Fluid Dynamics (CFD). The method is proposed to solve the right handed equations in 
incompressible fluid flow solver. Following [19], consider sparse linear system form 𝐴𝑢 = 𝑓, where 𝑓 is 
a given 𝑛-dimensional real vector, 𝑢 is a vector to be determined, and 𝐴 = (𝑎𝑖𝑗),  is a nonsingular real 

matrices of 𝑛 −order. Given −𝐸 as upper and −𝐹 lower  triangular of 𝐴 [20], then 𝑀 = 𝐷 − 𝐸 and 𝑁 =
𝐹 
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𝐴𝑢 = 𝑓 (1) 
Becomes 𝐷𝑢 + 𝐴𝑢 = 𝐷𝑢 + 𝑓 (2) 

Consider by  𝑢(𝑘+1) = (𝐷 − 𝐸)−1𝐹𝑢𝑘 + (𝐷 − 𝐸)−1𝑓 (3) 
Equation (3) resolved forward substitution as follows: 

𝑢[𝑘+1] = 𝑀−1𝑁𝑢[𝑘] + 𝑀−1𝑓 (4) 
Consider of splitting of 𝐴 as follows 𝐴 = 𝐷 − 𝐸 − 𝐹; with substitution split of 𝐴, obtained  𝐷𝑢 + (𝐷 −
𝐸 − 𝐹)𝑢 = 𝐷𝑢 + 𝑓. By modifying (1) as follows: 
𝑢 = 𝑢 + (𝐷 − 𝐸)−1(𝑓 − 𝐴𝑢) (5) 
In an iterative, 𝑢 on the left and right sides of equation (4) can be derived: 

𝑢(𝑘+1) = 𝑢̃(𝑘+1) + (𝐷 − 𝐸)−1(𝑓 − 𝐴𝑢̃(𝑘+1)) extend this formulation as follows: 

  𝑢(𝑘+1) = (𝐷 − 𝐸)−1𝐹𝑢̃(𝑘+1) + (𝐷 − 𝐸)−1𝑓 (6) 
By rearranging and simplifying eq. (6) yields 

𝑢(𝑘+1) = ((𝐷 − 𝐸)−1𝐹)2𝑢𝑘 + (𝐼 + (𝐷 − 𝐸)−1𝐹)(𝐷 − 𝐸)−1𝑓, substitution (6) Also we get  

𝑢(𝑘+1) = ((𝐷 − 𝐸)−1𝐹)3𝑢𝑘 + [(𝐼 + (𝐷 − 𝐸)−1𝐹) + ((𝐷 − 𝐸)−1𝐹)2](𝐷 − 𝐸)−1𝑓 (7) 
Equation (7) improve refinement Gauss Seidel. Then, by rearrange and simply expanding eq. (7), we 
get: 

𝑢(𝑘+1) = ((𝐷 − 𝐸)−1𝐹)4𝑢𝑘 + [(𝐼 + (𝐷 − 𝐸)−1𝐹) + ((𝐷 − 𝐸)−1𝐹)2 + ((𝐷 − 𝐸)−1𝐹)4](𝐷 − 𝐸)−1𝑓 (8) 

Equation (8) is second improve refinement Gauss Seidel. If we do similar to-𝑚𝑡ℎ ,for general we get the 
form of 𝑚 −refinement of Gauss-Seidel derivation.  
 
Convergence Gauss-Seidel (GS) 
 
Theorem 1.  Let 𝐴 is strictly diagonally dominant (SDD) matrices, Gauss-Seidel converges for all 𝑢0. 
Proof: The iteration converges if satisfy: 𝜌(𝐼 − (𝐷 − 𝐸)−1𝐴) < 1  (9) 
Let 𝜆 is a eigen value, 𝐼 − (𝐷 − 𝐸)−1𝐴 then, 

(𝐷 − 𝐿)𝑢 − 𝐴𝑢 = 𝜆(𝐷 − 𝐸)𝑢 (10) 

− ∑ 𝑎𝑖𝑗𝑢𝑘 = 𝜆𝑛
𝑗=𝑖+1 ∑ 𝑎𝑖𝑗𝑢𝑖

𝑗=1 , 1 ≤ 𝑖 ≤ 𝑛  (11) 

Then rearranged and simplify (11) and let for the absolute symbol given in the both side, as follows:  

|𝜆𝑎𝑖𝑖𝑢𝑘| ≤ ∑ |𝑎𝑖𝑗||𝑢𝑘| + |𝜆| ∑ |𝑎𝑖𝑗||𝑢𝑘|𝑖=1
𝑗=1

𝑛
𝑗=𝑖+1  (12) 

Since u is  eigenvector, 𝑢 ≠ 0. Consider  ‖𝑢‖∞ = 1. Used  k such that |𝑢𝑘| = 1 and |𝑢𝑗| ≤ 1 for all 𝑗 ≠ 𝑘. 

Hence: 

|𝜆| ≤
∑ 𝑎𝑖𝑗

𝑛
𝑗=𝑖+1

|𝑎𝑖𝑖|−∑ |𝑎𝑖𝑗|𝑖−1
𝑗=1

=
∑ |𝑎𝑖𝑗|𝑛

𝑗=𝑖+1

|𝑎𝑖𝑖|−∑ |𝑎𝑖𝑗|−∑ |𝑎𝑖𝑗|+∑ |𝑎𝑖𝑗|𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1

𝑛
𝑗=𝑖+1

=
∑ |𝑎𝑖𝑗|𝑛

𝑗=𝑖+1

(|𝑎𝑖𝑖|−∑ |𝑎𝑖𝑗|𝑖−1
𝑗=𝑖+1 −∑ |𝑎𝑖𝑗|𝑖−1

𝑗=1 )+∑ |𝑎𝑖𝑗|𝑛
𝑗=𝑖+1

< 1       (13)  

Therefore, Gauss-Seidel converges for every initial predictor 𝑢(0).  
Theorem 2.  Let A is a strictly dominan diagonal (SDD) matrices, then improve refinement Gauss Seidel 

converges for initial predictor 𝑢(0). 
Proof. Let U  is the exact solution . Since A is matrice SDD, Gauss-Seidel, and define Gauss Seidel 

converges. Let 𝑢̃(𝑢+1) converges to U. Such that, using norm in both of methods, as follows: 

‖𝑢(𝑘+1) − 𝑈‖ ≤ ‖𝑢̃(𝑘+1) − 𝑈‖ + ‖(𝐷 − 𝐸)−1‖‖(𝑓 − 𝐴𝑢̃(𝑛+1))‖ → ‖𝑈 − 𝑈‖ + ‖(𝐷 − 𝐸)−1‖‖𝑓 − 𝐴𝑈‖

= 0 + ‖(𝐷 − 𝐸)−1‖‖𝑏 − 𝑏‖ = 0 + 0 = 0 

Therefore  𝑢(𝑘+1)converges to U and 𝜌(((𝐷 − 𝐸)−1𝐹)3) = (𝜌((𝐷 − 𝐸)−1𝐹))
3

< 1. 

Such that Refine Gauss-Seidel converges. 
Theorem 3. Define A as simmetry definite positive (SPD) matrices. Then Gauss Seidel convergen for 

any initial approximation 𝑢(0). 
Proof. Consider 𝐴 = 𝐷 − 𝐸 − 𝐸𝑇 , with  𝐹 = 𝐸𝑇 and 𝐴 = 𝐴𝑇 then  𝐴 then symetrical matrice. Such that 
𝐵𝐺𝑆 = (𝐷 − 𝐸)−1𝐸𝑇 .  We will define that  𝜌(𝐵𝐺𝑆) < 1, with 𝜌 = spectral radius.  
Let be 𝜆 is a eigen value of 𝐵𝐺𝑆 and 𝑢 is a vector eigen. Then (𝐷 − 𝐸)−1𝐸𝑇𝑢 = 𝜆𝑢 ⟹ 𝐸𝑇𝑢 = 𝜆(𝐷 − 𝐸)𝑢. 
Hence 𝑢𝐻𝐸𝑇𝑢 =  𝜆𝑢𝐻(𝐷 − 𝐸)𝑢, with 𝑢𝐻 = (𝑢∗)𝑇. 
It simplifies to: 
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𝑢∗𝐴𝑢 = (1 − 𝜆)𝑢∗(𝐷 − 𝐸)𝑢 (14) 
With transpose conjugate on both side of (14): 
𝑢∗𝐴𝑢 = (1 − 𝜆)𝑢∗(𝐷𝑇 − 𝐸𝑇)𝑢 (15) 
From (14) and (15) obtained: 
𝜌((𝐷 − 𝐸)−1𝐹𝑇) = 𝜌((𝐷 − 𝐸)−1𝐹𝑇) < 1 (16) 
Therefore, the Gauss Seidel method converges if matrices 𝐴 is a symmetry positive definite matrice 
(SPD). 
Theorem 4. If A is matriks –M, then iterative method  Improve refinement Gauss Seidel (IRGS) 

converges for every initial approximation (𝑥)0. 
Proof. If A is a M-matrice, then spectral radius Gauss Seidel less than 1. So 𝜌((𝐷 − 𝐸)−1𝐹) <

1. 𝜌(((𝐷 − 𝐸)−1𝐹)3) < 1 .   
Such that improve refinement Gauss-Seidel converges. 
Similarly way, for general refinement Gauss-Seidel converges (𝑘 + 1) times fast as Gauss-Seidel 
method [21].   

2.2 Succesive Overrelaxation (SOR) 
The Successive Overrelaxation (SOR) method accelerates convergence better than Gauss-Seidel. SOR 
is also useful for solving partial differential equation-based linear systems. SOR have the relaxation 
value known as 𝜑. Splitting matrices 𝐴 with the following equations: 

𝐴 = 𝜑𝐷 − 𝜑𝐸 − 𝜑𝐹 + 𝐷 − 𝐷 (17) 

By substituting equation (9) into (3), we obtain: 

𝑢𝑖
(𝑘+1)

= (𝐷 − 𝜑𝐸)−1[(1 − 𝜑)𝐷 + 𝜑𝐹]𝑢(𝑛) + 𝜑(𝐷 − 𝜑𝐸)−1𝑓 (18) 

Similar to eq. (8), by following the similar method of rearranging and simplifying eq. (17) and eq.(18) 

We Obtained: 𝑢(𝑘+1) = [(𝐷 − 𝜑𝐸)−1[(1 − 𝜑)𝐷 + 𝜑𝐸]]
3

𝑢(𝑘) + [𝐼 + (𝐷 − 𝜑𝐿)−1((1 − 𝜑)𝐷 + 𝜑𝐹) +

[(𝐷 − 𝜑𝐸)−1(1 − 𝜑)𝐷 + 𝜑𝐹]2]𝜑(𝐷 − 𝜑𝐸)−1𝜑𝑏  (19) 

 
Equation (19) improve refinement-SOR. Then, by rearrange and simply expanding equation before we 
get: 

𝑢(𝑘+1) = [(𝐷 − 𝜑𝐸)−1[(1 − 𝜑)𝐷 + 𝜑𝐸]]
4

𝑢(𝑘) + [𝐼 + (𝐷 − 𝜑𝐿)−1((1 − 𝜑)𝐷 + 𝜑𝐹) + [(𝐷 − 𝜑𝐸)−1(1 −

𝜑)𝐷 + 𝜑𝐹]2]𝜑(𝐷 − 𝜑𝐸)−1𝜑𝑏 (20) 

 

If we do similar to-𝑚𝑡ℎ ,for general we get the form of 𝑚 −refinement of SOR derivation.  
 
Convergence Succesivve Overrelaxation (SOR) 
Theorem 5. [22] If 𝐴 ∈  ℂ𝑛,𝑛 is strictly diagonally dominant), then SOR method converges with boundary 

0 < 𝜑 ≤ 1. 
Proof: The Gauss-Seidel method, which is defined as matrices that are strictly diagonally dominant, 

implies following:  

𝑢𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑢𝑗

(𝑘+1)
− ∑ 𝑎𝑖𝑗𝑢𝑗

(𝑘)𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1 ] then we can formulate SOR with substitute 

the relaxatition value 𝜑  as follows:  

𝑢𝑖
(𝑘+1)

= (1 − 𝜑)𝑢𝑖
𝑘 +

𝜑

𝑎𝑖𝑖
[𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑢𝑗

(𝑘+1)𝑖−1
𝑗=1 − ∑ 𝑎𝑖𝑗𝑢𝑗

(𝑘)𝑛
𝑗=𝑖+1 ]  else, it can be written as follows: 

𝑢𝑖
(𝑘+1)

= (1 − 𝜑)𝑢𝑖
(𝑘)

+ 𝜑𝑥𝐺𝑆
(𝑘+1)

= 𝑢𝑖
𝑘 + 𝜑(𝑢𝐺𝑆

(𝑘+1)
− 𝑢𝑖

(𝑘)
). The relationship between 𝑢𝑖

(𝑘)
and 

𝑢𝐺𝑆
(𝑘)

can be demonstrated. The SOR method's solution is a convex set for all values of 0 < 𝜑 ≤

1. 

Let 𝑢(𝑘+1)be the (𝑘 + 1)𝑡ℎ approximation to the solution of (1) from SOR methods. Suppose 𝑢𝐸 is the 

exact solution of linear system (1), then‖𝑢(𝑘+1) − 𝑢𝐸‖ = ‖𝑢(𝑘+1) + 𝜑(𝐼 − 𝜑𝑈)−1(𝑓 − 𝐴𝑢(𝑘+1)) − 𝑢𝐸‖ ≤
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‖𝑢(𝑘+1) − 𝑢𝐸‖‖𝑓 − 𝐴𝑢(𝑘+1)‖‖𝜑(𝐼 − 𝜑𝑈)−1‖ → 0 then ‖𝑢(𝑘+1) − 𝑢𝐸‖ → 0. Hence the refinement  SOR 

is converges.  Similar way, it’s clearly shown that for the general refine converges (𝑘 + 1) times fast as 
SOR method. 

2.3 Numerical Example 
Consider linear equation with has coefficient a strictly dominant diagonal (SDD) matrices and a 
positive definite symmetry (SPD) matrices as follows:  

6𝑥1 + 2𝑥1 + 2𝑥3 = 5 

2𝑥1 + 8𝑥2 + 2𝑥3 = 6 

2𝑥1 + 2𝑥2 + 10𝑥3 = 7 

For tolerance 10−5, we will show the number of iteration through convergence rate, spectral radius, 
and number of iterations of the Gauss Seidell and refine SOR methods. 
Solution:  

Tabel 1.  
Numerical Result for Gauss-Seidel 

n 
Gauss -Seidel Refinement  Gauss-Seidel Improve Refinement Gauss Seidel 

𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 𝑥1 𝑥2 𝑥3 
1 0.8333 0.5417 0.4250 0.5111 0.5160 0.4946 0.4965 0.5022 0.5003 
2 0.5111 0.5160 0.4946 0.4992 0.5001 0.5001 0.5000 0.5000 0.5000 
3 0.4965 0.5022 0.5003 0.5000 0.5000 0.5000    
4 0.4992 0.5001 0.5001       
5 0.4999 0.5000 0.5000       
6 0.5000 0.5000 0.5000       

Tabel 2. 
Result of comparison spectral radius, iteration number 

Method Gauss -Seidel RGS IRGS 

Spectral Radius 0.1291 0.0167 0.0021 
Rate convergence 2.0472  4.0923  6.1658,  
Iteration Number 6 3 2 

Table 3. 
Spectral radius for SOR, RSOR, and IRSOR 

𝜑 𝜌𝑆𝑂𝑅 𝜌 RefineSOR 𝜌 Improve  SOR 

0.2 0.8542 0,7296 0.6933 
0.4 0.6947 0.4827 0.3353 
0.6 0.6016 0.3620 0.2178 
0.8 0.7767 0.6035 0.4686 

1 0.1291 0.0167 0.0021 
1.2 0.2535 0.0643 0.0163 
1.4 0.4440 0.1972 0.0875 
1.6 0.6328 0.4004 0.2534 
1.8 0.8182 0.6695 0.5477 
1.9 0.9096 0.8272 0.7525 

 
Table 4. 

Rate convergence for SOR, RSOR, and IRSOR 

𝜑 𝑆𝑂𝑅 RSOR IRSOR 

0.2 0.1576 0,3153 0.3663 
0.4 0.3643 0.7284 1.0927 
0.6 0.5082 1.0161 1.5242 
0.8 0.2527 0.5050 0.7580 

1 2.0472 4.0923 6.16558 
1.2 1.3724 2.7442 4.1166 
1.4 0.8119 1.6235 2.4361 
1.6 0.4576 0.9153 1.3728 
1.8 0.2006 0.4012 0.6020 
1.9 0.0948 0.1897 0.2844 
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3. Result and Discussion 
 

In section 2, the gauss-seidel and SOR iterative refinement method formulations and numerical case 
is presented to calculate their performance. Using MATLAB gives  the exact solution is 0.5. Table 1 
shows the solution of Gauss-Seidel method, refinement, and iterative refinement numerical results. 
The results show that the Gauss seidel method requires 6 iterations to find the exact value. The 
refinement Gauss-seidel formulation  yields from derivate form of ordinary Gauss-seidel, and 
particularly for iterative refinement Gauss-seidel.  The solution obtain for refinement Gauss-seidel is 5 
iteration, and Iterative refinement is 2 iteration. This means that the performance of iterative 
refinement method is faster than the two other methods. This is shown, from the number of iterations. 
In terms of spectral radius, Gauss-seidel to its second derivative has decreased. However, contrary to 
the rate of convergence which has increased as shown in table 2. This result is consistent with research 

by  [21], they solved a problem with a reduced number of iterations and faster rate of convergence than 
previous methods. The SOR method is an extension of the Gauss-seidell method by adding a relaxation 
parameter. In this case, the parameter values tested were [0.2,1.9]. Table. 3 presents the results of 
spectral radius values using relaxation values (𝜑) for SOR, SOR refinement, and improved SOR 
refinement. In each SOR method, the spectral radius distance value is getting smaller, especially when 
the relaxation value (𝜑)  is given 1, which is 0.0021 in the spectral radius of the improved refinement 
SOR method. A comparison of the spectral radius graph is shown in Figure 1. 

 
Figure 1. Comparison spectral radius SOR,RSOR,and IRSOR 

A comparison of the number of iterations for the SOR, RSOR, and IRSOR methods is shown in figure 
2. The optimum number of iterations in this case is located at a relaxation value (𝜑) of 1. The number 
of iterations increases if the relaxation value (𝜑)  gets closer to 2. However, the IRSOR method provides 
the best performance by reducing the number of iterations compared to the performance of RSOR and 
SOR. 
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Figure 2. Comparison Number Iteration of SOR,RSOR,and IRSOR 

In terms of convergence rate, the optimum value is given at relaxation 1 in IRSOR of 6.16558 as shown 
in table 4. This shows that the IRSOR method gives the best performance in terms of convergence rate 
and spectral radius. However, the relaxation value  (𝜑) of that exceeded 1 has an impact on the number 
of iterations increasing to approach the exact value. This research is limited to discussing performance 
at the convergence rate and spectral radius. Future research is expected to be studied with a large rank 
that affects a more complex sparse matrices. The relaxation value that gives the optimum approach 
also gives a larger error value, so that in the next research it is studied with a stochastic approach to 
get the optimum solution. 

4. Conclusion 

In this paper, Gauss-seidell and successive sverrelaxation (SOR) with their refinement and and improve 
refinement for solving sparse matrice is studied. Sufficient conditions for convergence are given and 
numerical experiments are considered to show the efficiency of the method. Sufficient conditions for 
convergence and spectral radius are given and numerical experiments are considered to show the 
efficiency of these methods. The main findings in this study, that Gauss seidel improvement refinement 
gives optimum spectral radius and convergence rate. Similarly, the SOR improved refinement method 
gives. Considering their performance, using parameters such as time to converge, number of iterations 
required to converge and spectral radius level of accuracy. However, SOR works with relaxation values 
so that it greatly affects the convergence rate and spectral radius results if given greater than 1.This 
research is limited to discussing performance at the convergence rate and spectral radius. Future 
research is expected to be studied with a large rank that affects a more complex sparse matrices. The 
relaxation value that gives the optimum approach also gives a larger error value, so that in the next 
research it is studied with a stochastic approach to get the optimum solution.  
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