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This research explores the application of graph-based optimization 
techniques to enhance yield management and minimize transportation 
costs in industrial operations, particularly focusing on mining. By 
representing mining sites and processing plants as nodes and 
transportation routes as edges in a graph, we formulated an optimization 
problem aimed at maximizing yields while minimizing associated costs. 
Utilizing linear programming, we demonstrated significant cost savings, 
reducing transportation costs from 2100 units to 1700 units through 
optimized flow distribution. The study integrates elements of graph 
theory, optimization algorithms, and machine learning, providing a 
robust framework for efficient resource allocation and operational 
planning. The numerical example underscores the practical applicability 
of these techniques, paving the way for further research and refinement to 
accommodate additional constraints and dynamic changes in resource 
availability. This research highlights the potential of graph-based 
methods to achieve substantial economic and operational improvements 
across various industrial contexts. 

  

Keywords:  

Graph-based Optimization; 
GEMOY Method; 
Industrial Efficiency; 
Resource Allocation; 
Yield Management. 
 

 

Corresponding Author: 

Hengki Tamando Sihotang,  
Program Studi Sistem Informasi, 
Universitas Putra Abadi Langkat, 

Jl. Letjen R. Soeprapto No.10, Kec. Stabat, Kabupaten Langkat, Sumatera Utara 20814, Indonesia,  
Email: hengkitamando26@gmail.com 

This is an open access article under the CC BY-NC license. 

 

 
1. Introduction  
In today's competitive landscape, industries such as mining, agriculture, manufacturing, and data 
analytics face significant pressure to optimize yields and enhance operational efficiency[1], [2]. 
Traditional methods often fall short in addressing the complexities and interdependencies inherent in 
these systems[3]. Graph-based exploration offers a promising alternative, providing a structured 
approach to model, analyze, and optimize intricate networks of relationships and dependencies[4], [5]. 
This research aims to develop and validate comprehensive graph-based methodologies to optimize 
yields across various applications, ultimately enhancing productivity and reducing costs[6]. 

The interconnected nature of modern industrial systems necessitates advanced techniques to 
capture and optimize their complexity[7]. Graph theory, with its ability to represent entities (nodes) 
and their relationships (edges), is well-suited for this purpose[8]–[10]. In mining, this could mean 
optimizing the extraction and transportation of resources; in agriculture, it might involve efficient water 
distribution or pest management; in manufacturing, streamlining production processes; and in data 
analytics, identifying patterns and making data-driven decisions[11]–[13]. Despite its potential, the 
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application of graph-based methods to yield optimization remains underexplored, creating a need for 
focused research in this area[14]. 

The primary challenges in optimizing yields using traditional methods include handling complex, 
dynamic interdependencies, and scaling solutions to large datasets[15]–[19]. Current approaches often 
lack the flexibility to adapt to changing conditions and the capacity to integrate diverse data sources 
effectively[20]. There is a critical need for methodologies that can model these complexities accurately 
and provide actionable insights for optimization[21]. This research seeks to address these gaps by 
developing graph-based models and algorithms tailored to the specific needs of various industries[22], 
[23]. 

Previous research has demonstrated the efficacy of graph-based methods in specific contexts[24], 
[25]. For example, graph algorithms like Dijkstra's for shortest paths have been successfully applied in 
logistics and transportation optimization[26]. Max flow algorithms have been used in network capacity 
optimization, and graph neural networks (GNNs) have shown promise in predictive modeling and 
recommendation systems[27]–[29]. However, a comprehensive framework that integrates these 
approaches for yield optimization across multiple industries is still lacking. This research builds on 
these foundations, aiming to generalize and expand their application. 

Graph theory provides the mathematical foundation for this research, offering tools and 
algorithms to model complex systems[30]–[32]. Key concepts include nodes and edges, weighted and 
unweighted graphs, directed and undirected graphs, and various graph traversal and optimization 
algorithms. By leveraging these principles, the research will develop tailored solutions for specific 
optimization problems. Additionally, integrating optimization techniques such as linear programming, 
genetic algorithms, and machine learning will enhance the ability to address non-linear and dynamic 
challenges effectively. 

The main objective of this research is to develop and validate comprehensive graph-based 
methodologies to model, analyze, and optimize complex systems across various industries, thereby 
improving yields, enhancing productivity, and reducing operational costs. This includes constructing 
accurate graph representations, designing efficient algorithms, integrating optimization techniques, 
and applying these methods to real-world scenarios to ensure their effectiveness and practicality. 

The anticipated benefits of this research include significant enhancements in productivity and 
operational efficiency across various industries, such as mining, agriculture, and manufacturing, 
through the optimization of yields. By identifying and eliminating inefficiencies, the research is 
expected to lead to substantial reductions in operational costs. Additionally, the development of 
comprehensive graph-based methodologies will provide actionable insights, facilitating more informed 
and strategic decision-making. The research will offer a robust, scalable, and adaptable framework for 
addressing complex optimization problems, applicable across different sectors and large datasets. This 
framework will also contribute to more sustainable and environmentally friendly operations by 
optimizing resource use and process flows. Furthermore, the research will advance the field of graph 
theory and its practical applications, contributing valuable knowledge and methodologies to both 
academic and professional communities. Industry practitioners will benefit from documented best 
practices and guidelines for implementing these optimization techniques, ultimately enhancing 
collaboration between academia and industry and promoting the adoption of innovative optimization 
strategies in industrial practices. 

2. Research Methods 
This research will employ a structured and systematic approach to develop and validate graph-based 
methodologies for optimizing yields across various industries[33]. The methodology consists of several 
key phases[34]: 
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Figure 1. GEMOY Method development flow[33] 

1) Literature Review: 

• Conduct a comprehensive review of existing literature on graph theory, optimization 
techniques, and their applications in mining, agriculture, manufacturing, and data analytics. 

• Identify gaps in current research and establish the theoretical foundation for the proposed 
methodologies. 

2) Data Collection and Graph Construction: 

• Gather relevant data from industry partners and public sources, including information on 
resource allocation, production processes, logistical networks, and other operational 
metrics. 

• Construct graph representations of these systems, with nodes representing entities (e.g., 
mining sites, production units) and edges representing relationships or interactions (e.g., 
transportation routes, dependencies). 

3) Algorithm Development: 

• Design and implement efficient graph algorithms tailored to the specific optimization 
problems identified in each industry. 

• Focus on algorithms for shortest paths, max flow/min cut, graph traversal (DFS, BFS), and 
other relevant techniques. 

• Integrate these algorithms with optimization methodologies such as linear programming, 
genetic algorithms, and machine learning models. 

4) Integration of Optimization Techniques: 

• Combine graph-based models with optimization techniques to address non-linear and 
dynamic challenges. 

• Utilize machine learning models, including graph neural networks (GNNs), to enhance 
predictive capabilities and decision-making processes. 

• Implement reinforcement learning for dynamic process optimization by learning optimal 
strategies through trial and error. 

5) Simulation and Testing: 

• Develop simulation environments to test the developed algorithms and models under 
various scenarios. 

• Conduct extensive testing to evaluate the performance, scalability, and robustness of the 
methodologies. 
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• Use synthetic data and real-world data from case studies to validate the models and 
algorithms. 

6) Case Study Validation: 

• Apply the developed models and algorithms to real-world scenarios in different industries, 
including mining, agriculture, and manufacturing. 

• Collaborate with industry partners to implement and monitor the proposed solutions. 

• Collect and analyze performance data to validate the effectiveness of the methodologies and 
refine them as necessary. 

7) Analysis and Refinement: 

• Analyze the results from simulations and case studies to identify strengths and weaknesses 
of the proposed methodologies. 

• Refine the graph models, algorithms, and optimization techniques based on the analysis. 

• Document best practices, guidelines, and lessons learned to inform future research and 
practical applications. 

8) Documentation and Dissemination: 

• Prepare detailed documentation of the research process, methodologies, results, and 
findings. 

• Publish research papers in academic journals and present findings at conferences to 
disseminate knowledge. 

• Develop practical guidelines and toolkits for industry practitioners to facilitate the adoption 
of graph-based optimization techniques. 

 

Basic Formulation 
Graph-based exploration leverages graph theory[31], a branch of mathematics focused on the study of 
graphs, which are structures used to model pairwise relations between objects. This theory provides 
powerful tools for representing and analyzing complex systems across various domains such as mining, 
agriculture, manufacturing, and data analytics. The fundamental elements of graph theory—nodes (or 
vertices) and edges (or links)—allow for the effective modeling of entities and their interactions within 
a system. 
Graph Representation 
A graph 𝐺 is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where: 

• 𝑉 is a set of vertices (or nodes), 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛} 

• 𝐸 is a set of edges (or links), 𝐸 =  {𝑒1, 𝑒2, … 𝑒𝑚}, where each edge 𝑒 is an unordered pair of 
vertices (for undirected graphs) or an ordered pair of vertices (for directed graphs). 

Types of Graphs 

• Undirected Graph: The edges have no direction. If  (𝑣𝑖 , 𝑣𝑗) ∈  𝐸, then (𝑣𝑗 , 𝑣𝑖) ∈  𝐸. 

• Directed Graph (DiGraph): The edges have a direction. If  (𝑣𝑖 , 𝑣𝑗) ∈  𝐸, then (𝑣𝑗 , 𝑣𝑖) ∉  𝐸 

necessarily. 

• Weighted Graph: Each edge  𝑒 has an associated weight 𝑤(𝑒), representing the cost, distance, 
or capacity. 

Graph Algorithms 
Graph algorithms are fundamental in solving various optimization problems[35]–[39]: 
1) Shortest Path: Algorithms like Dijkstra’s and A* are used to find the shortest path between nodes 

in a weighted graph. 
Dijkstra's Algorithm: Utilized for graphs with non-negative weights to find the shortest path from 
a source node to all other nodes. 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 𝑑(𝑣) = ∞∀𝑣 ∈ 𝑉, 𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) = 0 (1) 

𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛: 𝑑(𝑣) = min (𝑑(𝑣), 𝑑(𝑣) + 𝑤(𝑢, 𝑣))∀ (𝑢, 𝑣) ∈ 𝐸 (2) 

2) Max Flow/Min Cut: Algorithms like Ford-Fulkerson are used to find the maximum flow in a 
network. 
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Ford-Fulkerson Algorithm: Determines the maximum flow from a source to a sink in a flow 
network. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦: 𝑐𝑓(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) (3) 
𝐴𝑢𝑔𝑚𝑒𝑛𝑡 𝐹𝑙𝑜𝑤: 𝑓(𝑢, 𝑣) = 𝑓(𝑢, 𝑣) + ∆𝑓 (4) 

3) Graph Traversal: Algorithms like Depth-First Search (DFS) and Breadth-First Search (BFS) 
explore the nodes of a graph. 
Depth-First Search (DFS): Explores as far along a branch as possible before backtracking. 

DFS Visit:  Visit (𝑢) → for each 𝑣 ∈ Adj (𝑢), 𝑖𝑓 𝑣 is unvisited,  DFS (𝑣) (5) 
Breadth-First Search (BFS): Explores all neighbors of a node before moving to the next level. 

IBFS Initialization:  𝑑(𝑠𝑜𝑢𝑟𝑐𝑒) = 0, 𝑄 = {𝑠𝑜𝑢𝑟𝑐𝑒} (6) 
BFS Visit:  for each 𝑢 ∈ 𝑄, for each 𝑣 ∈ 𝐴𝑑𝑗(𝑢), 𝑖𝑓 𝑣 is unvisited, 𝑑(𝑣) = 𝑑(𝑢) + 1 (7) 

4) Community Detection: Algorithms such as Girvan-Newman detect clusters or communities 
within a graph. 
Girvan-Newman Algorithm: Detects communities by iteratively removing edges with the highest 
betweenness centrality. 

Edge Betweenness Centrality:   ∑
𝜎𝑠𝑡  (𝑒)

𝜎𝑠𝑡
𝑠,𝑡∈𝑉

, where 𝜎𝑠𝑡   

is the total number of shortest paths from 𝑠 to 𝑡 and 𝜎𝑠𝑡(𝑒) 
is the number of those paths that pass through edge 𝑒. 

(8) 

Optimization Techniques 
Combining graph-based models with optimization techniques enhances their problem-solving 
capabilities[40]–[44]: 
1) Linear Programming (LP): 

Formulate optimization problems with linear constraints and objectives. 
Objective Function: 𝑚𝑖𝑛/ 𝑚𝑎𝑥 𝑐𝑇𝑥      
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0 

(9) 

2) Genetic Algorithms (GA): 
Use evolutionary techniques to find approximate solutions to optimization problems. 
Initialization: Generate initial population 
Selection: Select individuals based on fitness 
Crossover: Combine pairs of individuals to produce offspring 
Mutation: Introduce random changes 

3) Machine Learning Integration: 
Implement Graph Neural Networks (GNNs) to learn from graph-structured data. 

Node Embeddings: ℎ𝑣
(𝑘)

= 𝜎 (𝑊𝑘 . AGGREGATE ({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝑁(𝑢)})) (10) 

Use Reinforcement Learning for dynamic optimization. 
Reward Function:  R(s, a) = immediate reward for taking action a in state s (11) 

Policy Update: π(α|s) =  π(α|s) + 𝛼(𝑅(𝑠, 𝑎) + 𝛾𝑎′
𝑚𝑎𝑥𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (12) 

Proposed new method for Graph-based Exploration for Mining and Optimization of Yields 
(GEMOY Method) 
To develop a new mathematical formulation for graph-based exploration aimed at optimizing yields 
in mining and other industries, we need to combine elements of graph theory, optimization 
algorithms, and machine learning. This formulation will focus on representing the complex systems 
involved, optimizing resource allocation, and improving overall efficiency. 
Graph Representation 
Define a graph 𝐺 = 𝑉, 𝐸) where: 

• 𝑉 is the set of vertices representing entities (e.g., mining sites, production units, agricultural 
fields). 

• 𝐸 is the set of edges representing relationships or interactions (e.g., transportation routes, 
dependencies). 
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Each edge 𝑒 ∈ 𝐸 has an associated weight 𝑤(𝑒) which can represent cost, distance, or capacity. 
Objective Function 
Let 𝑥𝑖 be the yield or output at node 𝑖 ∈ 𝑉. The primary objective is to maximize the total yield while 
minimizing costs and other constraints. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑥𝑖

𝑖∈𝑉

− ∑ 𝑤(𝑒). 𝑓(𝑒)

𝑒∈𝐸

 

Where 𝑓(𝑒) is the flow or utilization of edge 𝑒 

(13) 

Constraints 
1) Resource Constraints: 

∑ 𝑓(𝑖, 𝑗) ≤ 𝑅𝑖

𝑗∈𝒩(𝑖)

, ∀𝑖 ∈ 𝑉 

Where 𝒩(𝑖) is the set of neighbors of node 𝑖 and 
𝑅𝑖  is the resource limit at node 𝑖. 

(14) 

2) Capacity Constraints: 
0 ≤ 𝑓(𝑒) ≤ 𝑐(𝑒), ∀𝑒 ∈ 𝐸  
Where 𝑐(𝑒) is the capacity of edge 𝑒. 

(15) 

3) Flow Conservation (for directed graphs): 

∑ 𝑓(𝑖, 𝑗) −  ∑ 𝑓(𝑗, 𝑖) = 𝑏𝑖 ,

𝑗∈𝒩−(𝑖) ⬚𝑗∈𝒩+(𝑖)

∀𝑖 ∈ 𝑉 

Where 𝒩+(𝑖) and 𝒩−(𝑖) are the sets of outgoing 
and incoming neighbors of node 𝑖,  respectively, 
and 𝑏𝑖 is the supply or demand at node 𝑖. 
 

(16) 

Graph-based Algorithms 
1) Shortest Path with Yield Maximization: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑒)

𝑒∈𝑃

 

subject to: 
P={path from source to destination},  

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔 ∑ 𝑥𝑖

𝑖∈𝑃

 

(17) 

2) Max Flow with Yield Optimization: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑥𝑖

𝑖∈𝑉

 

subject to: 

∑ 𝑓(𝑒) ≤

𝑖∈𝐸

∑ 𝑐(𝑒),

𝑒∈𝐸

 𝑓(𝑒) ≥ 0, ∀𝑒 ∈ 𝐸 

(18) 

3) Node and Edge Weight Updates using Machine Learning: 
Implement a Graph Neural Network (GNN) to predict yields and update weights: 

ℎ𝑣
(𝑘)

= 𝜎(𝑊𝑘 . AGGREGATE ({ℎ𝑢
(𝑘−1)

: 𝑢 ∈ 𝒩(𝑣)})) 

Where ℎ𝑣
(𝑘)

 is the feature vector of node 𝑣 at layer 𝑘, 𝑊𝑘 is the weight 
matrix, and 𝜎 is an activation function. 

(19) 

Optimization Technique Integration 
1) Linear Programming (LP): 

Formulate the yield optimization as a linear program: 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑐𝑇 𝑥 
subject to: 
𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0 

(20) 
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2) Genetic Algorithms (GA): 
Initialize a population of potential solutions. 
Evaluate fitness based on the objective function  𝑍. 
Apply crossover and mutation operations to evolve the population toward optimal solutions. 

3) Reinforcement Learning (RL): 
Define a reward function 𝑅(𝑠, 𝑎) that incorporates yield optimization and resource costs. Update 
the policy 𝜋(𝑎|𝑠) based on the reward feedback: 

 𝜋(𝑎|𝑠) =  𝜋(𝑎|𝑠) + 𝛼(𝑅(𝑠, 𝑎) + 𝛾𝑎′
𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (21) 

3. Results and Discussion  
To test the GEMOY formulation in the previous section below let us discuss a detailed numerical 
example to optimise the yield in mining operations using graph-based methods. 

Example Setup 
We have the following components in a mining operation: 
3 Mining Sites (Nodes): 𝑨, 𝑩, 𝑪. 
2 Processing Plants (Nodes):  𝑷𝟏, 𝑷𝟐. 
5 Transportation Routes (Edges): Connecting mining sites to processing plants. 
The graph 𝑮 = (𝑽, 𝑬) is defined as: 
𝑽 = {𝑨, 𝑩, 𝑪, 𝑷𝟏, 𝑷𝟐} 
𝑬 =  {(𝑨, 𝑷𝟏), (𝑨, 𝑷𝟐), (𝑩, 𝑷𝟏), (𝑩, 𝑷𝟐), (𝑪, 𝑷𝟐)} 
Each edge has an associated cost, and each node has a yield value. 
 
Node Yields and Edge Costs 
Node Yields: 
A: 5 Units 
B: 40 Units 
C: 60 Units 

Edge Costs: 
(A,P1): 10 
(A,P2): 20 
(B,P1): 15 
(B,P2): 25 
(C,P2): 10 
Objective 
Maximize the total yield while minimizing the transportation costs. 
Formulation 

1) Objective Function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑥𝑖

𝑖∈{𝐴,𝐵,𝐶}

− ∑ 𝑤(𝑓). 𝑓(𝑒)

𝑒∈𝐸

 

Where 𝑥𝑖 is the yield at node  𝑖,  and 𝑓(𝑒) is the flow on edge 𝑒. 
2) Constraints: 

Flow conservation: 

∑ 𝑓(𝑖, 𝑗) −

𝑗∈𝒩+(𝑖)

∑ 𝑓(𝑖, 𝑗) = 𝑥𝑖

𝑗∈𝒩−(𝑖)

, ∀𝑖 ∈ {𝐴, 𝐵, 𝐶} 

Capacity constraints (assuming no capacity limits for simplicity) 
0 = 𝑓(𝑒) ≤ ∞, ∀𝑒 ∈ 𝐸 

Solution 
1) Graph Construction: 

 G=(V,E),V={A,B,C,P1,P2},E={(A,P1),(A,P2),(B,P1),(B,P2),(C,P2)} 
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2) Initial Flow Assignment: 
Assume initial flows based on yield distribution: 
f(A,P1)=30,f(A,P2)=20,f(B,P1)=20,f(B,P2)=20,f(C,P2)=60 

3) Calculate Initial Cost: 
Total Cost=30⋅10+20⋅20+20⋅15+20⋅25+60⋅10=300+400+300+500+600=2100 

4) Apply Optimization (e.g., Linear Programming): 
Formulate the LP problem to adjust flows for minimizing costs while maintaining yields: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤(𝑒). 𝑓(𝑒)

𝑒∈𝐸

 

subject to: 

∑ 𝑓(𝑗, 𝑖) −

𝑗∈𝒩+(𝑖)

∑ 𝑓(𝑗, 𝑖) = 𝑥𝑖

𝑗∈𝒩−(𝑖)

, ∀𝑖 ∈ {𝐴, 𝐵, 𝐶} 

 
5) Optimization Using Linear Programming: 

Define the LP problem in matrix form: 
Decision Variables: 

𝑓(𝐴, 𝑃1) = 𝑥1, 𝑓(𝐴, 𝑃2) = 𝑥2, 𝑓(𝐵, 𝑃1) = 𝑥3, 𝑓(𝐵, 𝑃2) = 𝑥4, 𝑓(𝐶, 𝑃2) = 𝑥5 
Objective Function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 10𝑥1+ 20𝑥2 +  15𝑥3 + 25𝑥4 + 10𝑥5 
Constraints: 

𝑥1 + 𝑥2 = 50 (Yield at A) 
𝑥3 + 𝑥4 = 40 (Yield at B) 

𝑥5 = 60 (Yield at C) 
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0 

6) Solve the Linear Programming Problem: 
Using an LP solver, we find the optimal solution for the decision variables: 

𝑥1 = 50, 𝑥2 = 0, 𝑥3 = 40, 𝑥4 = 0, 𝑥5 = 60 
7) Calculate Optimized Cost: 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 50 ⋅ 10 + 0 ⋅ 20 + 40 ⋅ 15 + 0 ⋅ 25 + 60 ⋅ 10
= 500 + 0 + 600 + 0 + 600 = 1700 

8) Result: 
The optimized solution yields a total cost of 1700 units with the following flows: 

𝑓(𝐴, 𝑃1) = 50 
𝑓(𝐵, 𝑃1) = 40 
𝑓(𝐶, 𝑃2) = 60 

By applying graph-based optimization techniques, we adjusted the flow distribution in the mining 
operation to minimize transportation costs while maintaining the yields. The total transportation cost 
was reduced from 2100 units to 1700 units. This example demonstrates the effectiveness of using 
advanced mathematical formulations and optimization algorithms in real-world industrial 
applications, providing a clear pathway to achieving operational efficiency and cost savings. 
 The numerical example presented demonstrates the application of graph-based optimization 
techniques to a mining operation. Initially, the total transportation cost for distributing yields from 
three mining sites to two processing plants was calculated to be 2100 units. By formulating the problem 
using linear programming, we aimed to minimize transportation costs while ensuring the yields from 
each mining site were appropriately allocated to the processing plants. The linear programming 
solution provided an optimized flow distribution: 50 units from Site A to Plant P1, 40 units from Site B 
to Plant P1, and 60 units from Site C to Plant P2. This optimized allocation reduced the total 
transportation cost to 1700 units. 
 The result highlights the effectiveness of using graph-based methods for yield optimization in 
a mining context. The initial arbitrary allocation resulted in higher transportation costs due to 
inefficient distribution of yields across the transportation routes. By leveraging the optimization 
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techniques, significant cost savings were achieved, demonstrating the potential for substantial 
improvements in operational efficiency. The constraints ensured that each mining site’s yield was fully 
utilized, and the optimal path selection minimized the transportation expenses. 
 This example underscores the practical applicability of graph theory and linear programming 
in industrial optimization problems. It illustrates how complex systems can be modeled and optimized 
using mathematical formulations, leading to tangible economic benefits. Moreover, the approach can 
be extended to more complex scenarios with additional constraints and larger networks, providing a 
robust framework for optimizing operations in various industries. The successful application in this 
simplified case sets the stage for further research and development of more sophisticated models and 
algorithms tailored to specific industrial contexts. 

4. Conclusion 
This research successfully demonstrates the application of graph-based optimization techniques to 
enhance yield management and minimize transportation costs in a mining operation. By representing 
the mining sites and processing plants as nodes and the transportation routes as edges in a graph, we 
formulated an optimization problem that maximizes yields while minimizing associated costs. The 
numerical example illustrated the substantial cost savings achieved through the use of linear 
programming, reducing transportation costs from 2100 units to 1700 units. The approach underscores 
the value of integrating graph theory, optimization algorithms, and machine learning to address 
complex industrial challenges. The ability to model interactions and dependencies in a graph framework 
enables more efficient resource allocation and operational planning. Furthermore, the flexibility of the 
method allows for adaptation to various industrial contexts, from mining to agriculture and beyond. 
This research paves the way for further exploration and refinement of graph-based optimization 
techniques. Future work could focus on incorporating additional constraints, such as capacity limits 
and dynamic changes in resource availability, to create even more robust models. Additionally, the 
integration of advanced machine learning algorithms, such as graph neural networks, can enhance the 
predictive capabilities and adaptability of the system. In conclusion, graph-based exploration and 
optimization provide a powerful toolkit for improving operational efficiency and achieving cost-
effective resource management in diverse industrial applications. The demonstrated benefits in this 
study highlight the potential for broader adoption and development of these techniques, promising 
significant economic and operational advancements. 
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