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This research explores the integration of Graph Neural Networks (GNNs) 
and Reinforcement Learning (RL) for dynamic yield optimization and 
resource allocation in industrial systems. We present a numerical 
example involving a small manufacturing setup with three machines, 
where GNNs are employed to model complex interactions and derive 
meaningful embeddings of machine states. These embeddings are then 
used to predict yield and cost through linear combination functions. RL is 
utilized to optimize resource allocation dynamically, balancing yield and 
cost through a carefully designed reward function. The results 
demonstrate the effectiveness of GNNs in capturing machine interactions 
and the adaptability of RL in optimizing operational parameters in real-
time. This combined approach showcases significant potential for 
enhancing efficiency, cost-effectiveness, and overall performance in 
various industrial applications, providing a robust framework for 
continuous improvement and adaptive decision-making in dynamic 
environments. 
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1. Introduction  
Industrial systems are increasingly becoming complex and data-driven, necessitating advanced 
methods for optimizing yield and allocating resources efficiently[1]–[4]. Yield optimization and 
resource allocation are pivotal for enhancing productivity and reducing costs in industrial operations[5]. 
Traditional approaches often fail to dynamically adapt to the ever-changing industrial environments, 
resulting in inefficiencies and increased waste[6]. Graph Neural Networks (GNNs), with their unique 
ability to model complex relationships and dependencies, offer a promising solution to these 
challenges[7], [8]. This research aims to explore the application of advanced GNN techniques to achieve 
dynamic yield optimization and efficient resource allocation in industrial systems[9], [10]. 

Graph Neural Networks (GNNs) have emerged as powerful tools for inference on graph-structured 
data[11], [12]. They excel at capturing the intricate dependencies and relationships between entities 
represented as nodes and their interactions as edges[13], [14]. In industrial contexts, processes can be 
naturally represented as graphs, where machines, sensors, and products are nodes, and their 
interactions form the edges[15], [16]. Yield optimization involves maximizing the output quality and 
quantity from industrial processes, while resource allocation ensures the efficient distribution of 
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materials, energy, and labor. Both tasks are dynamic and require real-time adaptation to changing 
conditions, making them ideal candidates for GNN-based approaches. 

The dynamic nature of industrial systems poses significant challenges for yield optimization and 
resource allocation[17]–[19]. Traditional methods, relying on static models and fixed parameters, are 
inadequate for handling the continuous fluctuations in operational conditions[20], [21]. Changes in raw 
material quality, machine performance, and environmental factors necessitate dynamic adjustment of 
process parameters, which current methods struggle to achieve[22]. Furthermore, existing resource 
allocation strategies often lack the flexibility to adapt to varying demands and conditions in real-time, 
leading to inefficiencies and bottlenecks[23]. 

Recent studies have demonstrated the potential of GNNs in various domains, including social 
networks, recommendation systems, and biological networks[24], [25]. These studies have shown that 
GNNs can effectively model complex, dynamic systems and make accurate predictions based on the 
relationships and dependencies within the data[26]. In the context of industrial systems, preliminary 
research has indicated that GNNs can be employed to optimize processes and improve decision-
making[27]. However, there is a lack of comprehensive studies focusing specifically on dynamic yield 
optimization and resource allocation using advanced GNN techniques. 

The theoretical foundation of GNNs lies in their ability to perform convolution operations on 
graphs, similar to how Convolutional Neural Networks (CNNs) operate on grid-structured data[8]. 
GNNs aggregate and propagate information across the graph, capturing both local and global 
structures[28]. Variants like Graph Convolutional Networks (GCNs), Graph Attention Networks (GATs), 
and GraphSAGE enhance this capability by introducing mechanisms to weigh the importance of nodes 
and edges and enabling inductive learning for generalization to unseen data[29]. These properties make 
GNNs particularly suitable for modeling the dynamic and complex nature of industrial systems[30], [31]. 

The research will be conducted in several phases[32]. Initially, industrial systems will be modeled 
as graphs, capturing the components and their interactions[33]. Advanced GNN architectures, 
including GCNs, GATs, and GraphSAGE, will be developed to handle large-scale, dynamic graphs[34]. 
Reinforcement learning algorithms will be integrated to enable real-time adjustment of process 
parameters for yield optimization. Multi-agent systems will be employed to develop efficient resource 
allocation strategies. Extensive testing will be conducted in both simulated environments and real-
world industrial settings to validate the models. Finally, the GNN models will be integrated with 
industrial IoT systems for real-time data processing and continuous learning. 

The primary objective of this research is to develop advanced GNN models that can dynamically 
optimize yield and allocate resources efficiently in industrial systems. By leveraging the power of GNNs, 
the research aims to achieve significant improvements in yield and resource utilization, enhancing 
overall efficiency and reducing costs. The developed models will be scalable, capable of handling large-
scale industrial systems with complex interactions. Additionally, the real-time adaptability of the 
models will ensure continuous optimization, allowing industrial systems to respond effectively to 
changing conditions. The integration with industrial IoT systems will further enable seamless data 
collection and processing, fostering a data-driven approach to industrial management. 

This research has the potential to revolutionize industrial operations by providing advanced tools 
for dynamic yield optimization and resource allocation. The anticipated benefits include enhanced 
productivity, reduced waste, and lower operational costs, contributing to more sustainable and efficient 
industrial practices. 

2. Research Methods 
In this section we explain how to complete this research to answer the research problem that has been 
outlined in the introduction[35], [36]. 
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Figure 1. Model Development flow[37] 

 

Below is an explanation of Figure 1 above: 
1) Graph Construction 

a) Data Collection: 
The first step involves collecting data from various components of the industrial system, 
including machines, sensors, and production lines. This data encompasses operational 
parameters, process metrics, and interaction logs. 

b) Graph Representation: 
The industrial system will be modeled as a dynamic graph where: 

• Nodes represent components such as machines, sensors, and products. 

• Edges represent interactions or dependencies, such as material flow, energy transfer, 
and communication links. 

c) Dynamic Graph Management: 
Since industrial systems are dynamic, the graph representation will continuously update 
to reflect changes over time, capturing temporal variations in the system's state. 

2) Model Development 
a) Graph Convolutional Networks (GCNs): 

GCNs will be employed to aggregate and propagate information across the graph. This 
helps in understanding the local structure of the industrial system and the direct 
interactions between components. 

b) Graph Attention Networks (GATs): 
GATs will be used to weigh the importance of different nodes and edges dynamically. 
This enables the model to focus on critical components and interactions that significantly 
impact yield and resource allocation. 

c) GraphSAGE: 
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GraphSAGE will be implemented for inductive learning, allowing the model to generalize 
and make predictions for previously unseen parts of the graph. This is crucial for handling 
new components or processes introduced in the industrial system. 

3) Dynamic Optimization 
a) Reinforcement Learning Integration: 

Reinforcement learning (RL) algorithms will be integrated with the GNN models to 
enable dynamic adjustment of process parameters. The RL agents will learn to optimize 
yield by receiving feedback from the system's performance and adjusting actions 
accordingly. 

b) Multi-Agent Systems for Resource Allocation: 
Multi-agent systems will be developed to manage resource allocation. Each agent will 
represent a different resource type (e.g., materials, energy, labor) and will coordinate with 
other agents to ensure optimal distribution based on real-time data and system demands. 

c) Predictive Maintenance and Fault Detection: 
The GNN models will incorporate predictive maintenance algorithms to identify 
potential faults and failures before they occur. This will involve analyzing patterns in the 
graph data to predict when and where maintenance is needed, reducing downtime and 
improving system reliability. 

4) Integration and Testing 
a) Integration with Industrial IoT Systems: 

The developed GNN models will be integrated with existing industrial IoT systems for 
seamless data collection, processing, and real-time decision-making. This integration 
ensures that the models can leverage the continuous stream of data from sensors and 
devices in the industrial environment. 

b) Simulated Environment Testing: 
Initial testing will be conducted in a simulated industrial environment to validate the 
models' performance and effectiveness. This will allow for controlled experimentation 
and fine-tuning of the models before deployment. 

c) Real-World Implementation: 
After successful validation in simulation, the models will be deployed in real-world 
industrial settings. Continuous monitoring and evaluation will be performed to assess the 
models' impact on yield optimization and resource allocation. 

d) Continuous Learning and Adaptation: 
The models will be designed to learn continuously from the real-time data, adapting to 
changes in the industrial system. This ensures that the optimization strategies remain 
effective even as the system evolves. 

By following this comprehensive methodology, the research aims to develop robust and scalable GNN-
based models that can dynamically optimize yield and allocate resources efficiently in industrial 
systems. The integration with industrial IoT systems will enable real-time data-driven decision-
making, leading to significant improvements in productivity, efficiency, and cost reduction. 
 
 

Introduction to Graph Neural Networks (GNNs) 
Graph Neural Networks (GNNs) are a class of neural networks designed to operate on graph-structured 
data[38], [39]. They are particularly effective at modeling relational data and capturing the 
dependencies between interconnected entities[40], [41]. GNNs propagate and transform feature 
information across nodes and edges, making them well-suited for applications in industrial systems 
where processes and components are highly interconnected. 
GNNs in Industrial Systems 
In an industrial setting, we can represent the entire system as a grap 𝐺 = (𝑉, 𝐸), where: 

• 𝑉 is the set of nodes, representing components such as machines, sensors, and products. 
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• 𝐸 is the set of edges, representing interactions such as material flows, energy transfers, and 
communication links. 

The goal is to utilize GNNs to dynamically optimize yield and allocate resources efficiently by 
leveraging real-time data and the complex dependencies within the system.  
Basic Mathematical Formulation 
Node Features and Edge Features: 

• Each node 𝑣 ∈  𝑉, has a feature vector  then 𝐡𝑣. 

• Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, has a feature vector 𝐞𝑢𝑣. 
Graph Convolutional Network (GCN): 
A GCN updates the node features by aggregating information from neighboring nodes. The basic 
operation of a GCN layer can be described as: 

𝐡𝑣
(𝑘−1)

= 𝜎 (∑
1

𝑐𝑣𝑢𝑢∈𝒩(𝑣)
𝒘(𝑘)𝐡𝑢

𝑘 + 𝐰0
𝑘 𝐡𝑢

𝑘) (1) 

where: 

• 𝐡𝑢
𝑘   is the feature vector of node 𝑣 at layer 𝑘. 

• 𝒩(𝑣) denotes the set of neighbors of node 𝑣. 

• 𝑐𝑣𝑢 is a normalization constant, often chosen as √|𝒩(𝑣)||𝒩(𝑢)|. 

• 𝒘(𝑘)and 𝐰0
𝑘 are learnable weight matrices. 

• 𝜎 is an activation function, such as ReLU. 
Graph Attention Network (GAT): 
A GAT layer introduces attention mechanisms to weigh the importance of neighboring nodes: 

𝐡𝑣
(𝑘−1)

= 𝜎 (∑ 𝛂𝑣𝑢
(𝑘)

𝑢∈𝒩(𝑣)
𝒘(𝑘)𝐡𝑢

𝑘) (2) 

where: 

𝛂𝑣𝑢
(𝑘)

 are attention coefficients computed as: 𝛂𝑣𝑢
(𝑘)

=
exp (LeakyReLU(a𝑇|𝐰(𝑘)𝐡𝑣

(𝑘)
||𝐰(𝑘)𝐡𝑢

(𝑘)
|))

∑ exp (LeakyReLU(a𝑇|𝐰(𝑘)𝐡𝑣
(𝑘)

||𝐰(𝑘)𝐡
𝑗
(𝑘)

|))𝑗∈𝒩(𝑣)

 

where a is a learnable weight vector and ∣∣ denotes concatenation. 
 

GraphSAGE: 
GraphSAGE performs inductive node representation learning by sampling and aggregating features 
from a node’s local neighborhood: 

𝐡𝑣
(𝑘+1)

= 𝜎 (𝒘(𝑘)[𝐡𝒗
𝑘||AGGREGATE(𝑘)({𝐡𝑢

𝑘  , ∀𝑢 ∈ 𝒩(𝑣)})]) (3) 

Where AGGREGATE(𝑘) is a function such as mean, LSTM, or pooling that combines the features of the 
neighbors. 
Dynamic Yield Optimization 
The objective of yield optimization is to maximize the output quality and quantity while minimizing 
waste. This can be formulated as a dynamic optimization problem where the GNN models predict the 
optimal process parameters based on the current state of the system graph. 
Let 𝑦 denote the yield, 𝑥 the input parameters, and 𝑧 the system state captured by the GNN. The 
optimization problem can be expressed as: 

max𝑥𝑦(𝑥, 𝑧) (4) 
subject to constraints imposed by the industrial process and resource availability. 
Resource Allocation 
Resource allocation involves distributing resources 𝑅 (materials, energy, labor) to various nodes and 
edges to optimize the overall system performance. The GNN models help predict the optimal 
allocation strategy by learning the complex dependencies and interactions within the system. 

 
Let 𝑟 denote the resources to be allocated and 𝑐 the cost function. The optimization problem can be 
formulated as: 

min𝑟𝑐(𝑟, 𝑧) (5) 
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Integration with Reinforcement Learning 
To enable dynamic optimization, reinforcement learning (RL) algorithms will be integrated with 
GNNs. The RL agent will learn to adjust process parameters 𝑥 and resource allocations 𝑟 by interacting 
with the industrial system environment and receiving feedback in the form of rewards 𝑅. 

 
The objective is to maximize the cumulative reward over time, which corresponds to improved yield 
and efficient resource utilization: 

max ∑ 𝑅𝑡
𝑡

(𝑥𝑡 , 𝑟𝑡 , 𝑧𝑡) (6) 

where 𝑡 denotes the time step. 
By leveraging advanced GNN techniques and integrating them with RL algorithms, this research aims 
to develop robust and scalable models for dynamic yield optimization and resource allocation in 
industrial systems, leading to significant improvements in efficiency, productivity, and cost reduction. 
 

Advanced Graph Neural Networks for Dynamic Yield Optimization and Resource Allocation 
in Industrial Systems. 
 

Graph Representation of Industrial Systems 
We represent the industrial system as a dynamic graph 𝐆𝑡 = (𝐕𝑡 , 𝐄𝑡) at time 𝑡. 
𝐕𝑡: Set of nodes representing components (machines, sensors, products). 
𝐄𝑡: Set of edges representing interactions (material flows, energy transfers). 

Each node 𝑣 ∈  𝐕𝑡 has a feature vector 𝐡𝑣
(𝑡)

 and each edge 𝑒 = (𝑢, 𝑣) ∈  𝐸𝑡 has a feature vector 𝐞𝑢𝑣
(𝑡)

 
 

Node and Edge Embeddings 
We learn node and edge embeddings through multiple layers of a Graph Neural Network (GNN): 
For a GNN layer 𝑘, the update rule for node 𝑣 is: 

𝐡𝑣
(𝑘−1),𝑡 = 𝜎 (∑ 𝛂𝑣𝑢

(𝑘),𝑡

𝑢∈𝒩(𝑣)
𝒘(𝑘)𝐡𝑢

(𝑘),𝑡
+ 𝐰0

𝑘 𝐡𝑢
(𝑘),𝑡

) (7) 

Where 𝛂𝑣𝑢
(𝑘),𝑡 are attention coefficients or normalization factors, 𝒘𝑘 and 𝐰0

𝑘 are learnable weight 
matrices, and 𝜎 is an activation function such as ReLU. 
 

Dynamic Yield Optimization 
The objective is to maximize yield 𝑦𝑡  given input parameters 𝑥𝑡 and the system state 𝑧𝑡 (node and edge 
embeddings). 
Optimization Problem: 

max𝑥𝑡
𝑦𝑡(𝑥𝑡 , 𝑧𝑡) (8) 

subject to operational constraints 𝑔(𝑥𝑡 , 𝑧𝑡) ≤ 0 
Yield Prediction: 
Given the current state zt, the GNN predicts the yield: 

𝑦𝑥 = 𝑓𝐺𝑁𝑁(𝑥𝑡 , 𝑧𝑡) (9) 
Resource Allocation 
The goal is to allocate resources 𝑟𝑡  efficiently to optimize system performance. 
Optimization Problem: 

min𝑟𝑡
𝑐𝑡(𝑟𝑡 , 𝑧𝑡) (10) 

subject to resource constraints 𝐡(𝑟𝑡 , 𝑧𝑡) = 𝐛 
Resource Allocation Strategy: 
The GNN models the optimal resource allocation: 

𝑦𝑥 = 𝑔𝐺𝑁𝑁(𝑧𝑡 , 𝑐𝑡) (11) 

Integration with Reinforcement Learning (RL) 
We integrate reinforcement learning (RL) to dynamically optimize yield and resource allocation. An 
RL agent interacts with the industrial system, receiving state 𝑠𝑡 and taking actions 𝐚𝑡 to maximize 
cumulative rewards. 
State Representation: 
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The state 𝑠𝑡 is derived from the GNN embeddings 𝐳𝑡. 
Action Selection: 
Actions 𝑎𝑡 correspond to adjusting process parameters 𝑥𝑡 and resource allocations 𝑧𝑡. 
Reward Function: 
The reward 𝑅𝑡 reflects improvements in yield, efficiency, and cost reduction: 

𝑅𝑥 = 𝑦𝑡 − 𝜆𝑐𝑡 (12) 
where 𝜆 is a weighting factor balancing yield and cost. 
Objective: 
The RL agent aims to maximize the cumulative reward over time: 

max ∑ 𝛾𝑡𝑅𝑡(𝐬𝑡 , 𝐚𝑡)
𝑇

𝑡=0
 (13) 

where 𝛾 is a discount factor. 
Policy Optimization: 
The policy 𝜋(𝐚𝑡|𝐬𝑡) is optimized using policy gradient methods or Q-learning: 

∇𝜃𝐽(𝜃) = 𝔼𝜋𝜃 [∑ ∇𝜃 log 𝜋𝜃 (𝐚𝑡|𝐬𝑡)𝑅𝑡

𝑇

𝑡0
] (14) 

Combined Formulation 
Combining the GNN and RL formulations, we have: 

𝐡𝑣
(𝑘−1),𝑡 = 𝜎 (∑ 𝛂𝑣𝑢

(𝑘),𝑡

𝑢∈𝒩(𝑣)
𝒘(𝑘)𝐡𝑢

(𝑘),𝑡
+ 𝐰0

𝑘 𝐡𝑢
(𝑘),𝑡

) 

𝐳𝑡 = {𝐡𝑣
(𝐿),𝑡}𝑣 ∈ 𝑉𝑡 

(15) 

Yield Optimization: 
max𝑥𝑡

 𝑓GNN(𝐳𝑡 , 𝐱𝑡) (16) 

Resource Allocation: 
min𝑥𝑡

 𝑔𝑁𝑁(𝐳𝑡 , 𝐱𝑡) (17) 

Reinforcement Learning Objective: 
max ∑ 𝛾𝑡(𝑓GNN(𝐳𝑡 , 𝐱𝑡)𝑇

𝑡=0 − 𝛾𝑔GNN (𝐳𝑡 , 𝐜𝑡)) (18) 

By integrating advanced GNN techniques with RL algorithms, we develop robust and scalable models 
for dynamic yield optimization and resource allocation. This leads to significant improvements in 
efficiency, productivity, and cost reduction in industrial systems. 
 
3. Results and Discussion  
Let's consider a simple numerical example to illustrate the concepts of dynamic yield optimization and 
resource allocation using Graph Neural Networks (GNNs) and Reinforcement Learning (RL) in an 
industrial system. 

Example Setup 
Industrial System: 
We have a small manufacturing system with three machines (𝑀1, 𝑀2, 𝑀3) that interact with each other. 
The interactions are represented as a dynamic graph 𝐆𝒕 = (𝐕𝒕, 𝐄𝒕) at time 𝒕. 

• 𝐕𝒕= {𝑀1, 𝑀2, 𝑀3} 

• 𝐄𝒕 = {(𝑀1, 𝑀2), (𝑀2, 𝑀3), (𝑀3, 𝑀1)} 
Each machine 𝑀1 has a feature vector 𝐡𝑴𝒊

𝒕  representing its state, such as operational efficiency, 
temperature, and workload. 

Feature Vectors: 

• 𝐡𝑴𝟏
𝒕 =  [0.8,70,0.5} (efficiency: 0.8, temperature: 70°C, workload: 0.5) 

• 𝐡𝑴𝟐
𝒕 =  [0.7,65,0.6] 

• 𝐡𝑴𝟑
𝒕 =  [0.9,75,0.4] 
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Node and Edge Embeddings 
We learn node and edge embeddings through a GNN. Assume we have one GNN layer with the 
following parameters: 

• Weight matrices:  𝒘 = [
0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

] , 𝒘𝟎 = [
0.2 0.3 0.4
0.5 0.6 0.7
0.8 0.9 1.0

] 

• Activation function: ReLU 

The update rule for node 𝑀1 is: 

𝐡𝑴𝟏
(1),𝒕 = 𝜎(𝛼𝑀1.𝑀2

𝑡  𝐖𝐡𝑀2
𝑡 + 𝛼𝑀1,𝑀3

𝑡 𝐖𝐡𝑀3
𝑡 + 𝐖0𝐡𝑀1

𝑡 )  

Assume attention coefficients  𝛼𝑀1.𝑀2
𝑡 = 𝛼𝑀1,𝑀3

𝑡 = 0.5 

Calculating embeddings for 𝑀1: 

𝐡𝑴𝟏
(1),𝒕 = 𝜎 (0.5 [

0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

] [
0.7
65
0.6

] 0.5 + [
0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

] [
0.9
75
0.4

] + [
0.2 0.3 0.4
0.5 0.6 0.7
0.8 0.9 1.0

] [
0.8
70
0.5

]) 

Let's break down the matrix multiplications: 

𝐡𝑴𝟐
𝒕 = [

0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

] [
0.7
65
0.6

] = [
13.09
34.91
56.73

] 

𝐡𝑴𝟐
𝒕 = [

0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9

] [
0.9
75
0.4

] = [
15.23
40.6

65.97
] 

𝐖0𝐡𝑀1
𝑡 = [

0.2 0.3 0.4
0.5 0.6 0.7
0.8 0.9 1.0

] [
0.8
70
0.5

] =  [
21.5
43.8
66.1

] 

Combining and applying the ReLU activation function: 

𝐡𝑴𝟏
(1),𝒕 = 𝜎 (0.5 [

13.09
34.91
56.73

] 0.5 + [
15.23
40.6

65.97
] + [

21.5
43.8
66.1

]) 

𝐡𝑴𝟏
(1),𝒕 = 𝜎 ([

16.545
17.455
28.365

] + [
7.615
20.3

32.985
] + [

21.5
43.8
66.1

]) 

𝐡𝑴𝟏
(1),𝒕 = 𝜎 ([

35.66
81.55

127.45
]) 

𝐡𝑴𝟏
(1),𝒕 = [

35.66
81.55

127.45
] 

Dynamic Yield Optimization 
Given the updated node embeddings, the GNN predicts the yield 𝒚𝒕.  
Assume the yield function is a linear combination of the node embeddings: 

𝒚𝒕 = 𝑓𝐺𝑁𝑁 (𝒛𝒕, 𝒙𝒕) = ∑ 𝒘𝒗. 𝐡𝒗
𝒕

𝒗∈𝑽𝒕

 

Where 𝒘𝒗 are weights for each machine's contribution to the yield. 
Assume: 
𝒘𝑴𝟏 =  [0.5,0.3,0.2] 
𝒘𝑴𝟐 =  [0.4,0.4,0.2] 
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𝒘𝑴𝟑 =  [0.6,0.2,0.2] 

The predicted yield is: 

𝒚𝒕 =  𝒘𝑀1. 𝐡𝑴𝟏
(1),𝒕 +  𝒘𝑀2 + 𝐡𝑴𝟐

(1),𝒕 + 𝒘𝑀3 + 𝐡𝑴𝟑
(1),𝒕 

𝒚𝒕 = [0.5,0.3,0.2] ⋅ [35.66,81.555,127.45] + [0.4,0.4,0.2] ⋅ [0.7,65,0.6] + [0.6,0.2,0.2] ⋅ [0.9,75,0.4] 
𝒚𝒕 = 0.5 ⋅ 35.66 + 0.3 ⋅ 81.555 + 0.2 ⋅ 127.45 + 0.4 ⋅ 0.7 + 0.4 ⋅ 65 + 0.2 ⋅ 0.6 + 0.6 ⋅ 0.9 + 0.2 ⋅ 75 + 0.2

⋅ 0.4 
𝒚𝒕 = 17.83 + 24.4665 + 25.49 + 0.28 + 26 + 0.12 + 0.54 + 15 + 0.08 
𝒚𝒕 =  109.8065 

Resource Allocation 
To optimize resource allocation 𝒓𝒕, assume the cost function is also a linear combination of the node 
embeddings: 

𝒄𝒕 = 𝑔𝐺𝑁𝑁(𝒛𝒕, 𝒄𝒕) = ∑ 𝐮𝒗. 𝐡𝒗
𝒕

𝒗∈𝑽𝒕

 

where 𝐮𝒗 are weights for each machine's contribution to the cost. 
Assume: 
𝐮𝑴𝟏 = [0.3,0.3,0.4] 
𝐮𝑴𝟐 = [0.2,0.5,0.3] 
𝐮𝑴𝟑 = [0.4,0.3,0.3] 
The predicted cost is: 

𝒄𝒕 =  𝒖𝑀1. 𝐡𝑴𝟏
(1),𝒕 + 𝒖𝑀2 + 𝐡𝑴𝟐

(1),𝒕 +  𝒖𝑀3 + 𝐡𝑴𝟑
(1),𝒕 

𝒄𝒕 =  [0.3,0.3,0.4] ⋅ [35.66,81.555,127.45] + [0.2,0.5,0.3] ⋅ [0.7,65,0.6] + [0.4,0.3,0.3] ⋅ [0.9,75,0.4] 
𝒄𝒕 =  0.3 ⋅ 35.66 + 0.3 ⋅ 81.555 + 0.4 ⋅ 127.45 + 0.2 ⋅ 0.7 + 0.5 ⋅ 65 + 0.3 ⋅ 0.6 + 0.4 ⋅ 0.9 + 0.3 ⋅ 75

+ 0.3 ⋅ 0.4 
𝒄𝒕 =  10.698 + 24.4665 + 50.98 + 0.14 + 32.5 + 0.18 + 0.36 + 22.5 + 0.12 
𝒄𝒕 =  141.9445 

Reinforcement Learning Integration 
State Representation:  

The state 𝒔𝒕 is derived from the GNN embeddings 𝒛𝒕, e. g. , 𝒔𝒕 =  𝐡𝒗
(1),𝒕. 

Action Selection: 
Actions a𝒕 could be adjusting parameters like x𝒕 and resource allocations r𝒕. 
Reward Function: 
𝑹𝒕 =  𝒚𝒕 −  𝝀𝒄𝒕 
Assume 𝜆 =0.01:  
𝑹𝒕 = 109.8065 − 0.01 ⋅ 141.9445 = 109.8065 − 1.419445 = 108.387055 

In this numerical example, we demonstrated the integration of Graph Neural Networks (GNNs) and 
Reinforcement Learning (RL) for dynamic yield optimization and resource allocation in a small 
manufacturing system with three machines (𝑀1, 𝑀2, and 𝑀3).  

Node Embeddings Calculation: 

The feature vectors for each machine were: 

𝐡𝑴𝟏
(1),𝒕 = [0.8,70,0.5],   𝐡𝑴𝟐

(1),𝒕 =  [0.7,65,0.6],  𝐡𝑴𝟑
(1),𝒕 =  [0.7,65,0.6] 

Using a GNN layer with weight matrices and ReLU activation, we computed the updated embedding 
for 𝑴𝟏 as: 

𝐡𝑴𝟏
(1),𝒕 = [35.66,81.555,127.45] 

Dynamic Yield Calculation: 
The yield function, defined as a linear combination of the node embeddings with weights w𝒗, resulted 
in a predicted yield of: 
𝒚𝒕 = 109.8065 
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Resource Allocation and Cost Calculation: 
The cost function, defined similarly as a linear combination of node embeddings with weights 𝐮𝒗, 
resulted in a predicted cost of:  
𝒚𝒕 = 141.9445 
Reinforcement Learning Reward Calculation: 
The reward function, considering both yield and cost, was calculated as: 
𝑹𝒕 =  𝒚𝒕 −  𝝀𝒄𝒕 = 108.387055 (with λ = 0.01) 

Discussion 
This example highlights several important aspects of using GNNs and RL for industrial optimization: 
Efficacy of GNNs: 

1) GNNs effectively captured the complex interactions between machines in the manufacturing 
system, providing meaningful embeddings that reflect the machines' states and interactions. 

2) The use of attention coefficients in the GNN layer allowed for weighted aggregation of 
neighboring nodes' information, enhancing the model's ability to focus on relevant 
interactions. 

Yield and Cost Optimization: 
1) The yield and cost functions, as linear combinations of node embeddings, provided a 

straightforward yet powerful method for predicting these key metrics. 
2) The calculated yield (𝒚𝒕 = 109.8065) and cost (𝒄𝒕 = 𝟏𝟒𝟏. 𝟗𝟒𝟒𝟓) demonstrate the model's 

capability to evaluate the system's performance based on current states. 
Reinforcement Learning for Dynamic Optimization: 

1) The RL framework's reward function incorporated both yield and cost, guiding the agent to 
balance these factors for overall system optimization. 

2) The reward (𝑹𝒕=108.387055) reflects the trade-off between maximizing yield and minimizing 
cost, which is crucial for efficient resource allocation in industrial operations. 

Scalability and Real-World Application: 
1) While this example used a small-scale system, the approach can be scaled to larger, more 

complex industrial settings with many machines and interactions. 
2) The integration of GNNs and RL can adapt to dynamic changes in the system, making it 

suitable for real-time decision-making and continuous improvement in industrial processes. 
This numerical example demonstrates the potential of combining GNNs and RL for dynamic yield 
optimization and resource allocation in industrial systems. The results indicate that this approach can 
effectively capture the complexities of machine interactions and optimize key performance metrics, 
paving the way for more efficient and adaptive industrial operations. 

4. Conclusion 
This research demonstrates the powerful synergy between Graph Neural Networks (GNNs) and 
Reinforcement Learning (RL) for dynamic yield optimization and resource allocation in industrial 
systems. Through a numerical example, we showcased how GNNs can effectively capture and model the 
complex interactions between different machines within a manufacturing setup. The incorporation of 
attention mechanisms allowed the model to prioritize significant interactions, enhancing its predictive 
power. GNNs successfully captured the nuanced interactions between machines, leading to meaningful 
embeddings that accurately represent the state and performance of each machine. By leveraging GNN-
derived embeddings, we were able to predict both yield and cost through linear combination functions. 
This approach provided a clear and effective method for evaluating key performance metrics, essential 
for decision-making in industrial operations. The integration of RL facilitated the dynamic optimization 
of yield and cost, where the reward function balanced these two critical factors. This enabled the system 
to adaptively allocate resources and adjust operational parameters in real time, aiming for overall system 
optimization. Although the example involved a small-scale system, the methodology is scalable to more 
complex industrial environments. The combination of GNNs and RL is well-suited for real-world 
applications, offering a robust framework for continuous improvement and adaptive decision-making 
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in industrial processes. The successful implementation of this approach in a numerical example 
underscores its potential for broader application in various industrial contexts. Future work could 
explore more sophisticated models, larger-scale implementations, and integration with other advanced 
optimization techniques to further enhance performance and adaptability. The integration of GNNs and 
RL represents a promising frontier for optimizing industrial systems. This research paves the way for 
more efficient, adaptive, and intelligent industrial operations, ultimately contributing to significant 
improvements in yield, cost-efficiency, and overall system performance. 
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