A Improve refinement approach iterative method for solution linear equition of sparse matrices

Authors

  • Desi Vinsensia STMIK Pelita Nusantara, Medan, Indonesia
  • Yulia Utami STMIK Pelita Nusantara, Medan, Indonesia
  • Fathia Siregar STMIK Pelita Nusantara, Medan, Indonesia
  • Muhammad Arifin STMIK Pelita Nusantara, Medan, Indonesia

DOI:

https://doi.org/10.35335/cit.Vol15.2024.721.pp306-313

Keywords:

Rate converge; Refinement; Sparse matrices; Spectral radius

Abstract

In this paper, systems of linear equations on sparse matrices investigated through modified improve method using Gauss-Seidel and successive overrelaxation (SOR) approach. Taking into adapted convergence rate on the Improve refinement Gauss-seidel outperformed the prior two Gauss-Seidel methods in terms of rate of convergence and number of iterations required to solve the problem by applying a modified version of the Gauss-Seidel approach. to observe the effectiveness of this method, the numerical example is given. The main findings in this study, that Gauss seidel improvement refinement gives optimum spectral radius and convergence rate. Similarly, the SOR improved refinement method gives. Considering their performance, using parameters such as time to converge, number of iterations required to converge and spectral radius level of accuracy. However, SOR works with relaxation values so that it greatly affects the convergence rate and spectral radius results if given greater than 1.

Downloads

Download data is not yet available.

References

A. K. Maurya, A. S. Yadav, A. Kumar, and K. K. Kushwaha, “An Overview on Numerical Solution of System,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 5, pp. 9476–9481, 2017, doi: 10.15680/IJIRSET.2017.0605290.

M. Kryshchuk and J. Lavendels, “Iterative Method for Solving a System of Linear Equations,” Procedia Comput. Sci., vol. 104, no. December 2016, pp. 133–137, 2016, doi: 10.1016/j.procs.2017.01.085.

S. Siswanti, S. Syamsudhuha, and S. Putra, “Metode Iterasi Aor untuk Sistem Persamaan Linear Prekondisi,” JOM FMIPA, vol. 2, no. 1, pp. 387–396, 2015, [Online]. Available: https://www.neliti.com/publications/188697/metode-iterasi-jacobi-dan-gauss-seidel-prekondisi-untuk-menyelesaikan-sistem-per%0Ahttps://www.neliti.com/publications/186001/metode-iterasi-aor-untuk-sistem-persamaan-linear-prekondisi

D. Yan, T. Wu, Y. Liu, and Y. Gao, “An efficient sparse-dense matrix multiplication on a multicore system,” in International Conference on Communication Technology Proceedings, ICCT, 2017, vol. 17, pp. 1880–1883. doi: 10.1109/ICCT.2017.8359956.

H. Alyahya, R. Mehmood, and I. Katib, Parallel iterative solution of large sparse linear equation systems on the intel mic architecture. 2020. doi: 10.1007/978-3-030-13705-2_16.

J. D. Booth and G. S. Bolet, “Neural Acceleration of Graph Based Utility Functions for Sparse Matrices,” IEEE Access, vol. 11, no. February, pp. 31619–31635, 2023, doi: 10.1109/ACCESS.2023.3262453.

S. Masanawa and H. Abubakar, “Sparse Matrix Approach in Neural Networks for Effective Medical Data Sets Classifications,” J. Basic Appl. Res. Biomed., vol. 6, no. 2, pp. 90–97, 2020, doi: 10.51152/jbarbiomed.v6i2.113.

S. Chen, J. Fang, C. Xu, and Z. Wang, “Adaptive Hybrid Storage Format for Sparse Matrix–Vector Multiplication on Multi-Core SIMD CPUs,” Appl. Sci., vol. 12, no. 19, 2022, doi: 10.3390/app12199812.

J. Wen, Y. Y. Zhang, and S. S. T. Yau, “k-mer Sparse matrix model for genetic sequence and its applications in sequence comparison,” J. Theor. Biol., vol. 363, pp. 145–150, 2014, doi: 10.1016/j.jtbi.2014.08.028.

S. Mohr, W. Dawson, M. Wagner, D. Caliste, T. Nakajima, and L. Genovese, “Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library,” J. Chem. Theory Comput., vol. 13, no. 10, pp. 4684–4698, Oct. 2017, doi: 10.1021/acs.jctc.7b00348.

R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. Seatle Washington: SIAM, 2007. doi: 10.1137/1.9780898717839.

Y. Saad, “Iterative Methods for Sparse Linear Systems,” Iterative Methods Sparse Linear Syst., 2003, doi: 10.1137/1.9780898718003.

U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix multiplication: The distributed block-compressed sparse row library,” Parallel Comput., vol. 40, p. 47, 2014.

A. K. Maulana and F. Fitriyani, “Evaluasi Kinerja Sparse Matrix-vector Multiplication Menggunakan Format Penyimpanan Csr Dan Bcsr Pada Mpi,” in eProceedings of Engineering, 2017, vol. 4, no. 1, pp. 1301–1309.

W. Yang, K. Li, and K. Li, “A parallel computing method using blocked format with optimal partitioning for SpMV on GPU,” J. Comput. Syst. Sci., vol. 92, pp. 152–170, 2018, doi: 10.1016/j.jcss.2017.09.010.

T. K. Enyew, G. Awgichew, E. Haile, and G. D. Abie, “Second-refinement of Gauss-Seidel iterative method for solving linear system of equations,” Ethiop. J. Sci. Technol., vol. 13, no. 1, pp. 1–15, 2020, doi: 10.4314/ejst.v13i1.1.

and G. C. F. P. P. Koester, S. Ranka, “A Parallel Gauss-Seidel Algorithm for Sparse Power System Matrices,” IEEE Trans. Power Syst., pp. 184–193, 1994.

Z. Virag, “Improve Symmetric Gauss-Seidel Method For Solving Sparse Linier Systems Appear In CFD,” in International Congress of Croation Society of Mechanics, 2006, pp. 21–23.

R. Abdullahi and R. Muhammad, “Refinement Of Preconditioned Overrelaxation Algorithm For Solution of The Linear Algeberaic System Ax=b,” Sci. World J., vol. 16, no. 3, pp. 226–231, 2021.

Y. Saad, Parallel iterative methods for sparse linear systems, vol. 8, no. C. Elsevier Masson SAS, 2001. doi: 10.1016/S1570-579X(01)80025-2.

G. Dessalew, T. Kebede, G. Awgichew, and A. Walelign, “Generalized Refinement of Gauss-Seidel Method for Consistently Ordered 2-Cyclic Matrices,” Abstr. Appl. Anal., vol. 2021, 2021, doi: 10.1155/2021/8343207.

D. M. Young, “Chapter 4 - CONVERGENCE OF THE BASIC ITERATIVE METHODS,” in Iterative Solution of Large Linear Systems, D. M. Young, Ed. Academic Press, 1971, pp. 106–139. doi: https://doi.org/10.1016/B978-0-12-773050-9.50012-7.

Downloads

Published

2024-01-30

How to Cite

Vinsensia, D., Utami, Y., Siregar, F., & Arifin, M. (2024). A Improve refinement approach iterative method for solution linear equition of sparse matrices. Jurnal Teknik Informatika C.I.T Medicom, 15(6), 306–313. https://doi.org/10.35335/cit.Vol15.2024.721.pp306-313