Classification of restrictions on community activities level in the covid-19 pandemic using fuzzy logic

Authors

  • Abidatul Izzah Politeknik Negeri Malang, Indonesia
  • Ratna Widyastuti Politeknik Negeri Malang, Indonesia
  • Zulfa Khalida Politeknik Negeri Malang, Indonesia

DOI:

https://doi.org/10.35335/cit.Vol15.2023.454.pp108-117

Keywords:

Classification, Covid 19, Fuzzy, Restrictions on Community Activities, Rules

Abstract

Indonesia is facing a second wave of Covid-19 cases in mid-2021. In that time, the increase reached 381 percent or almost 5 times. Therefore, the government announced the Enforcement of Restrictions on Community Activities. This is determined by the government for each city in Indonesia so it cannot be predicted by the general public. Actually,  The Restrictions on Community Activities status level determines the risk of a region's economic activities. Therefore, we need a method that can help to categorize the level of PPKM in an area based on available daily data. Thus, this study aims to create a rule model based on Fuzzy Tsukamoto logic that can help determine the level of risk of an area. Based on data on Covid-19 patients in Malang District, East Java has formed 6 fuzzy variables, each of which has 4 fuzzy sets, and 15 rules that can be used as a classification model. From the results, we obtained an accuracy value of 80%. This shows that the generated rule can properly classify the daily Covid-19 data to then estimate the next restrictions level.

Downloads

Download data is not yet available.

References

N. Qodar, “Headline: Indonesia Memasuki Gelombang Kedua Covid-19, Seberapa Bahaya?,” Liputan 6, 2021. [Online]. Available: https://www.liputan6.com/news/read/4595177/headline-indonesia-memasuki-gelombang-kedua-covid-19-seberapa-bahaya. [Accessed: 07-Oct-2022].

CNN Indonesia, “Satgas Sebut Indonesia Masuk Gelombang Kedua Covid-19,” CNN Indonesia, 2021. [Online]. Available: https://www.cnnindonesia.com/nasional/20210630080610-20-661120/satgas-sebut-indonesia-masuk-gelombang-kedua-covid-19. [Accessed: 07-Oct-2022].

F. C. Farisa, “Saat Angka Covid-19 Dekati Puncak Gelombang Delta dan Diprediksi Masih Akan Meningkat...,” Kompas.com, 2022. [Online]. Available: https://nasional.kompas.com/read/2022/02/14/09262891/saat-angka-covid-19-dekati-puncak-gelombang-delta-dan-diprediksi-masih-akan?page=all. [Accessed: 22-Oct-2022].

P. Bittihn, L. Hupe, J. Isensee, and R. Golestanian, “Local measures enable COVID-19 containment with fewer restrictions due to cooperative effects,” EClinicalMedicine, vol. 32, p. 100718, 2021.

Y. Miki, N. Chubachi, F. Imamura, N. Yaegashi, and K. Ito, “Impact of COVID-19 restrictions on the research environment and motivation of researchers in Japan,” Prog. Disaster Sci., vol. 8, p. 100128, 2020.

J. Laurence and H. H. Kim, “Individual and community social capital, mobility restrictions, and psychological distress during the COVID-19 pandemic: a multilevel analysis of a representative US survey,” Soc. Sci. Med., vol. 287, p. 114361, 2021.

Menteri Dalam Negri, “Instruksi Menteri Dalam Negeri Nomor 22 Tahun 2021 Tentang Pemberlakuan Pembatasan Kegiatan Masyarakat Level 4 Corona Virus Disease 2019 Di Wilayah Jawa Dan Bali Menteri,” Jakarta. 2021.

J. Hu, H. Peng, J. Wang, and W. Yu, “kNN-P: A kNN classifier optimized by P systems,” Theor. Comput. Sci., vol. 817, pp. 55–65, 2020.

A. Yahyaoui’s, I. Yahyaoui, and N. Yumu?ak, “13 - Machine Learning Techniques for Data Classification,” in Advances in Renewable Energies and Power Technologies, I. Yahyaoui, Ed. Elsevier, 2018, pp. 441–450.

M. Marbun, A. P. Barus, K. C. Dewi H Hutajulu, P. Studi Teknologi Informasi, S. Pelita Nusantara, and P. Studi Teknik Informatika, “Klasifikasi Kebijakan Level Ppkm Berdasarkan Data Penyebaran Covid-19 Dengan Pendekatan Fuzzy Rough Set,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 440–454, 2022.

J. A. Roubos, M. Setnes, and J. Abonyi, “Learning fuzzy classification rules from labeled data,” Inf. Sci. (Ny)., vol. 150, no. 1, pp. 77–93, 2003.

P. Billaudel, A. Devillez, and G. Villermain Lecolier, “Performance evaluation of fuzzy classification methods designed for real time application,” Int. J. Approx. Reason., vol. 20, no. 1, pp. 1–20, 1999.

C. E. Hinojosa, H. A. Camargo, and V. Y. J. Túpac, “Learning fuzzy classification rules from imbalanced datasets using multi-objective evolutionary algorithm,” in 2015 Latin America Congress on Computational Intelligence (LA-CCI), 2015, pp. 1–6.

D. Norris, B. W. Pilsworth, and J. F. Baldwin, “Medical diagnosis from patient records—A method using fuzzy discrimination and connectivity analyses,” Fuzzy Sets Syst., vol. 23, no. 1, pp. 73–87, 1987.

H. Ahmadi, M. Gholamzadeh, L. Shahmoradi, M. Nilashi, and P. Rashvand, “Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review,” Comput. Methods Programs Biomed., vol. 161, pp. 145–172, 2018.

P. R. Innocent and R. I. John, “Computer aided fuzzy medical diagnosis,” Inf. Sci. (Ny)., vol. 162, no. 2, pp. 81–104, 2004.

J. F.-F. Yao and J.-S. Yao, “Fuzzy decision making for medical diagnosis based on fuzzy number and compositional rule of inference,” Fuzzy Sets Syst., vol. 120, no. 2, pp. 351–366, 2001.

N. H. Phuong and V. Kreinovich, “Fuzzy logic and its applications in medicine,” Int. J. Med. Inform., vol. 62, no. 2, pp. 165–173, 2001.

I. B. de Medeiros, M. A. Soares Machado, W. J. Damasceno, A. M. Caldeira, R. C. dos Santos, and J. B. da Silva Filho, “A Fuzzy Inference System to Support Medical Diagnosis in Real Time,” Procedia Comput. Sci., vol. 122, pp. 167–173, 2017.

D. Painuli, D. Mishra, S. Bhardwaj, and M. Aggarwal, “20 - Forecast and prediction of COVID-19 using machine learning,” in Data Science for COVID-19, U. Kose, D. Gupta, V. H. C. de Albuquerque, and A. Khanna, Eds. Academic Press, 2021, pp. 381–397.

M. O. Alassafi, M. Jarrah, and R. Alotaibi, “Time series predicting of COVID-19 based on deep learning,” Neurocomputing, vol. 468, pp. 335–344, 2022.

E. Gothai, R. Thamilselvan, R. R. Rajalaxmi, R. M. Sadana, A. Ragavi, and R. Sakthivel, “Prediction of COVID-19 growth and trend using machine learning approach,” Mater. Today Proc., vol. 81, pp. 597–601, 2023.

S. Solayman, S. A. Aumi, C. S. Mery, M. Mubassir, and R. Khan, “Automatic COVID-19 prediction using explainable machine learning techniques,” Int. J. Cogn. Comput. Eng., vol. 4, pp. 36–46, 2023.

Satuan Tugas Penanganan COVID-19 KAB.Malang, “Satgas Covid-19,” Satgas Covid-19, 2020. [Online]. Available: https://covid19.go.id/peta-sebaran. [Accessed: 07-Oct-2022].

R. K. Dewi, “PPKM Diperpanjang hingga 25 Juli, Ini Level Risiko Wilayah Jawa-Bali Halaman all - Kompas,” KOMPAS.com, 2021. [Online]. Available: https://www.kompas.com/tren/read/2021/07/21/130217665/ppkm-diperpanjang-hingga-25-juli-ini-level-risiko-wilayah-jawa-bali?page=all. [Accessed: 07-Jun-2022].

Y. Artha Uli, “Daftar Lengkap Daerah PPKM Level 2, 3, dan 4 di Jawa-Bali,” kontan.co.id, 2021. [Online]. Available: https://money.kompas.com/read/2021/09/07/102817326/daftar-lengkap-daerah-ppkm-level-2-3-dan-4-di-jawa-bali. [Accessed: 07-Jun-2022].

F. Pebrianto, “PPKM Diperpanjang Sampai 23 Agustus, Ini Daftar Daerah yang Berubah Level - Nasional Tempo,” Tempo.co, 2021. [Online]. Available: https://nasional.tempo.co/read/1495350/ppkm-diperpanjang-sampai-23-agustus-ini-daftar-daerah-yang-berubah-level. [Accessed: 30-Jul-2022].

https://www.cnnindonesia.com/nasional/20210802192047-20-675445/daftar-daerah-ppkm-level-4-di-jawa-bali-pada-3-9-agustus. [Online]. Available: https://www.cnnindonesia.com/nasional/20210802192047-20-675445/daftar-daerah-ppkm-level-4-di-jawa-bali-pada-3-9-agustus. [Accessed: 30-Jul-2022].

I. U. Prihatin, “Diperpanjang Hingga 18 Oktober, Ini Daftar Daerah Jawa-Bali Masuk PPKM level 2-3 _ merdeka,” merdeka.com, 2021. [Online]. Available: https://www.merdeka.com/peristiwa/ppkm-diperpanjang-hingga-18-oktober-ini-daftar-daerah-jawa-bali-masuk-ppkm-level-2-3.html. [Accessed: 30-Aug-2022].

Shania, “Inilah Wilayah PPKM Level 1, 2, dan 3 Jawa-Bali yang Diperpanjang Hingga 15 November 2021 - Bisnis Liputan6,” liputan6.com, 2021. [Online]. Available: https://www.liputan6.com/bisnis/read/4700217/inilah-wilayah-ppkm-level-1-2-dan-3-jawa-bali-yang-diperpanjang-hingga-15-november-2021. [Accessed: 07-Jun-2022].

Kulkarni, “On the Mean Accuracy of Hierarchical Classifiers,” IEEE Trans. Comput., vol. C–27, no. 8, pp. 771–776, 1978.

S. Rastogi, “Improving Classification Accuracy of Automated Text Classifiers,” in 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 2018, pp. 1–7.

W. Li and Q. Guo, “A New Accuracy Assessment Method for One-Class Remote Sensing Classification,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4621–4632, 2014.

G. Jager and U. Benz, “Measures of classification accuracy based on fuzzy similarity,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, pp. 1462–1467, 2000.

K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The Balanced Accuracy and Its Posterior Distribution,” in 2010 20th International Conference on Pattern Recognition, 2010, pp. 3121–3124.

D. Obst, B. Ghattas, S. Claudel, J. Cugliari, Y. Goude, and G. Oppenheim, “Improved linear regression prediction by transfer learning,” Comput. Stat. Data Anal., vol. 174, p. 107499, 2022.

P. A. V. B. Swamy and P. A. Tinsley, “Linear prediction and estimation methods for regression models with stationary stochastic coefficients,” J. Econom., vol. 12, no. 2, pp. 103–142, 1980.

B. Jonsson, “Prediction with a linear regression model and errors in a regressor,” Int. J. Forecast., vol. 10, no. 4, pp. 549–555, 1994.

V. Ravi and H.-J. Zimmermann, “Fuzzy rule based classification with FeatureSelector and modified threshold accepting,” Eur. J. Oper. Res., vol. 123, no. 1, pp. 16–28, 2000.

Q. Shen and A. Chouchoulas, “A rough-fuzzy approach for generating classification rules,” Pattern Recognit., vol. 35, no. 11, pp. 2425–2438, 2002.

Downloads

Published

2023-06-05

How to Cite

Izzah, A., Widyastuti, R., & Khalida, Z. (2023). Classification of restrictions on community activities level in the covid-19 pandemic using fuzzy logic. Jurnal Teknik Informatika C.I.T Medicom, 15(2), 108–117. https://doi.org/10.35335/cit.Vol15.2023.454.pp108-117