Graph-based Exploration for Mining and Optimization of Yields (GEMOY Method)

Authors

  • Hengki Tamando Sihotang Universitas Putra Abadi Langkat, Stabat, Indonesia
  • Fristi Riandari Politeknik Negeri Medan, Medan, Indonesia
  • Jonhariono Sihotang Universitas Putra Abadi Langkat, Stabat, Indonesia

DOI:

https://doi.org/10.35335/cit.Vol16.2024.777.pp70-81

Keywords:

Graph-based Optimization, GEMOY Method, Industrial Efficiency, Resource Allocation, Yield Management

Abstract

This research explores the application of graph-based optimization techniques to enhance yield management and minimize transportation costs in industrial operations, particularly focusing on mining. By representing mining sites and processing plants as nodes and transportation routes as edges in a graph, we formulated an optimization problem aimed at maximizing yields while minimizing associated costs. Utilizing linear programming, we demonstrated significant cost savings, reducing transportation costs from 2100 units to 1700 units through optimized flow distribution. The study integrates elements of graph theory, optimization algorithms, and machine learning, providing a robust framework for efficient resource allocation and operational planning. The numerical example underscores the practical applicability of these techniques, paving the way for further research and refinement to accommodate additional constraints and dynamic changes in resource availability. This research highlights the potential of graph-based methods to achieve substantial economic and operational improvements across various industrial contexts.

Downloads

Download data is not yet available.

Author Biography

Hengki Tamando Sihotang, Universitas Putra Abadi Langkat, Stabat, Indonesia

 

 

 

References

A. D. Pazho, G. A. Noghre, A. A. Purkayastha, J. Vempati, O. Martin, and H. Tabkhi, “A survey of graph-based deep learning for anomaly detection in distributed systems,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 1, pp. 1–20, 2023, doi: https://doi.org/10.1109/TKDE.2023.3282898.

A. H. Osman and O. M. Barukub, “Graph-based text representation and matching: A review of the state of the art and future challenges,” IEEE Access, vol. 8, pp. 87562–87583, 2020, doi: 0.1109/ACCESS.2020.2993191.

A. L. Bertozzi and E. Merkurjev, “Graph-based optimization approaches for machine learning, uncertainty quantification and networks,” in Handbook of Numerical Analysis, vol. 20, Elsevier, 2019, pp. 503–531. doi: https://doi.org/10.1016/bs.hna.2019.04.001.

A. Laurent et al., “Methodological review and detailed guidance for the life cycle interpretation phase,” J. Ind. Ecol., vol. 24, no. 5, pp. 986–1003, 2020, doi: https://doi.org/10.1111/jiec.13012.

A. Majeed and I. Rauf, “Graph theory: A comprehensive survey about graph theory applications in computer science and social networks,” Inventions, vol. 5, no. 1, p. 10, 2020, doi: https://doi.org/10.3390/inventions5010010.

A. Veremyev, A. Semenov, E. L. Pasiliao, and V. Boginski, “Graph-based exploration and clustering analysis of semantic spaces,” Appl. Netw. Sci., vol. 4, no. 104, pp. 1–26, 2019, doi: https://doi.org/10.1007/s41109-019-0228-y.

Amri, S., & Sihotang, J. (2023). Impact of Poverty Reduction Programs on Healthcare Access in Remote Ar-eas: Fostering Community Development for Sustainable Health. Law and Economics, 17(3), 170-185.

C. Musto, P. Lops, M. de Gemmis, and G. Semeraro, “Context-aware graph-based recommendations exploiting personalized pagerank,” Knowledge-Based Syst., vol. 216, no. 15, p. 106806, 2021, doi: https://doi.org/10.1016/j.knosys.2021.106806.

D. Ahmedt-Aristizabal, M. A. Armin, S. Denman, C. Fookes, and L. Petersson, “Graph-based deep learning for medical diagnosis and analysis: past, present and future,” Sensors, vol. 21, no. 14, p. 4758, 2021, doi: https://doi.org/10.3390/s21144758.

D. Jungnickel and D. Jungnickel, Graphs, networks and algorithms, vol. 3. Springer, 2005. doi: https://doi.org/10.1007/978-3-540-72780-4.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, Learning combinatorial optimization algorithms over graphs, vol. 30. 2017.

E. Micheni, J. Machii, and J. Murumba, “Internet of things, big data analytics, and deep learning for sustainable precision agriculture,” in 2022 IST-Africa Conference (IST-Africa), IEEE, 2022, pp. 1–12. doi: 10.23919/IST-Africa56635.2022.9845510.

E. Skakalina, “Application of ant optimization algorithms in the solution of the routing problem,” ??????? ??????????, ????????? ?? ??’????. ??????? ???????? ?????, vol. 6, no. 58, pp. 75–83, 2019, doi: https://doi.org/10.26906/SUNZ.2019.6.075.

I. van Gent and G. La Rocca, “Formulation and integration of MDAO systems for collaborative design: A graph-based methodological approach,” Aerosp. Sci. Technol., vol. 90, no. 7, pp. 410–433, 2019, doi: https://doi.org/10.1016/j.ast.2019.04.039.

J. Cao, Y. He, and Q. Zhu, “Feedstock scheduling optimization based on novel extensible p-graph reasoning in ethylene production,” Ind. Eng. Chem. Res., vol. 59, no. 42, pp. 18965–18976, 2020, doi: https://doi.org/10.1021/acs.iecr.0c03563.

J. Devezas and S. Nunes, “A review of graph-based models for entity-oriented search,” SN Comput. Sci., vol. 2, no. 6, p. 437, 2021, doi: https://doi.org/10.1007/s42979-021-00828-w.

J. Gohil, J. Patel, J. Chopra, K. Chhaya, J. Taravia, and M. Shah, “Advent of Big Data technology in environment and water management sector,” Environ. Sci. Pollut. Res., vol. 28, no. 45, pp. 64084–64102, 2021, doi: ttps://doi.org/10.1007/s11356-021-14017-y.

J. Hester, T. R. Miller, J. Gregory, and R. Kirchain, “Actionable insights with less data: guiding early building design decisions with streamlined probabilistic life cycle assessment,” Int. J. Life Cycle Assess., vol. 23, no. 23, pp. 1903–1915, 2018, doi: https://doi.org/10.1007/s11367-017-1431-7.

J. Jalving, Y. Cao, and V. M. Zavala, “Graph-based modeling and simulation of complex systems,” Comput. Chem. Eng., vol. 125, no. 45, pp. 134–154, 2019, doi: https://doi.org/10.1016/j.compchemeng.2019.03.009.

J. L. Gross, J. Yellen, and M. Anderson, Graph theory and its applications. Chapman and Hall/CRC, 2018. doi: https://doi.org/10.1201/9780429425134.

J. Otala, A. Minard, G. Madraki, and S. Mousavian, “Graph-based modeling in shop scheduling problems: Review and extensions,” Appl. Sci., vol. 11, no. 11, p. 4741, 2021, doi: https://doi.org/10.3390/app11114741.

J. van Leeuwen, “Graph algorithms,” in Algorithms and complexity, Elsevier, 1990, pp. 525–631. doi: https://doi.org/10.1016/B978-0-444-88071-0.50015-1.

J. Wang, W. Zhang, Y. Shi, S. Duan, and J. Liu, “Industrial big data analytics: challenges, methodologies, and applications,” arXiv Prepr. arXiv1807.01016, vol. 3, no. 7, pp. 365–400, 2018, doi: https://doi.org/10.48550/arXiv.1807.01016.

L. Kotzur et al., “A modeler’s guide to handle complexity in energy systems optimization,” Adv. Appl. Energy, vol. 4, no. 33, p. 100063, 2021, doi: https://doi.org/10.1016/j.adapen.2021.100063.

M. Bedinger, L. Beevers, G. H. Walker, A. Visser?Quinn, and K. McClymont, “Urban systems: Mapping interdependencies and outcomes to support systems thinking,” Earth’s Futur., vol. 8, no. 3, p. e2019EF001389, 2020, doi: https://doi.org/10.1029/2019EF001389.

M. Herrera, M. Pérez-Hernández, A. Kumar Parlikad, and J. Izquierdo, “Multi-agent systems and complex networks: Review and applications in systems engineering,” Processes, vol. 8, no. 3, p. 312, 2020, doi: https://doi.org/10.3390/pr8030312.

M. K. Saggi and S. Jain, “A survey towards an integration of big data analytics to big insights for value-creation,” Inf. Process. Manag., vol. 54, no. 5, pp. 758–790, 2018, doi: https://doi.org/10.1016/j.ipm.2018.01.010.

M.-L. Tseng, T. P. T. Tran, H. M. Ha, T.-D. Bui, and M. K. Lim, “Sustainable industrial and operation engineering trends and challenges Toward Industry 4.0: A data driven analysis,” J. Ind. Prod. Eng., vol. 38, no. 8, pp. 581–598, 2021, doi: https://doi.org/10.1080/21681015.2021.1950227.

N. Andréasson, A. Evgrafov, and M. Patriksson, An introduction to optimization: Foundations and fundamental algorithms, vol. 1. 2005. [Online]. Available: https://www.math.chalmers.se/Math/Grundutb/CTH/tma947/0405/kompendium-2.pdf

Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veli?kovi?, “Combinatorial optimization and reasoning with graph neural networks,” J. Mach. Learn. Res., vol. 24, no. 130, pp. 1–61, 2023, [Online]. Available: https://www.jmlr.org/papers/v24/21-0449.html

R. C. Holte, T. Mkadmi, R. M. Zimmer, and A. J. MacDonald, “Speeding up problem solving by abstraction: A graph oriented approach,” Artif. Intell., vol. 85, no. 1–2, pp. 321–361, 1996, doi: https://doi.org/10.1016/0004-3702(95)00111-5.

R. Marinescu and R. Dechter, “AND/OR branch-and-bound search for combinatorial optimization in graphical models,” Artif. Intell., vol. 173, no. 16–17, pp. 1457–1491, 2009, doi: https://doi.org/10.1016/j.artint.2009.07.003.

R. Wu and L. Jiang, “Recovering dynamic networks in big static datasets,” Phys. Rep., vol. 912, pp. 1–57, 2021, doi: https://doi.org/10.1016/j.physrep.2021.01.003.

S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón, “Computing graph neural networks: A survey from algorithms to accelerators,” ACM Comput. Surv., vol. 54, no. 9, pp. 1–38, 2021, doi: https://doi.org/10.1145/3477141.

S. Bag, M. S. Rahman, G. Srivastava, H.-L. Chan, and D. J. Bryde, “The role of big data and predictive analytics in developing a resilient supply chain network in the South African mining industry against extreme weather events,” Int. J. Prod. Econ., vol. 251, no. 9, p. 108541, 2022, doi: https://doi.org/10.1016/j.ijpe.2022.108541.

S. E. Phule, “Graph Theory Applications in Database Management,” Int. J. Sci. Res. Mod. Sci. Technol., vol. 3, no. 3, pp. 13–17, 2024, doi: ttps://doi.org/10.59828/ijsrmst.v3i3.190.

S. Even, Graph algorithms. Cambridge University Press, 2011.

S. R. Sinsel, R. L. Riemke, and V. H. Hoffmann, “Challenges and solution technologies for the integration of variable renewable energy sources—a review,” Renew. energy, vol. 145, no. 1, pp. 2271–2285, 2020, doi: https://doi.org/10.1016/j.renene.2019.06.147.

S. Ren, Y. Zhang, Y. Liu, T. Sakao, D. Huisingh, and C. M. V. B. Almeida, “A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions,” J. Clean. Prod., vol. 210, no. 21, pp. 1343–1365, 2019, doi: https://doi.org/10.1016/j.jclepro.2018.11.025.

S. Thurner, R. Hanel, and P. Klimek, Introduction to the theory of complex systems. USA: Oxford University Press, 2018.

Sihotang, J. (2019). Implementation of Gray Level Transformation Method for Sharping 2D Images. INFOKUM, 8(1, Desembe), 16-19.

Sihotang, J. (2020). Analysis of service satisfaction level using rough set algorithm. Infokum, 8(2, Juni), 55-56.

Sihotang, J. (2020). Analysis Of Shortest Path Determination By Utilizing Breadth First Search Algorithm. Jurnal Info Sains: Informatika dan Sains, 10(2), 1-5.

Sihotang, J. (2023). Analysis Of The Differences In The Use Of Zoom And Google Meet In Learning At Putra Abadi Langkat University. Instal: Jurnal Komputer, 15(02), 474-479.

Sihotang, J. (2023). Optimization of Inventory Ordering Decision in Retail Business using Exponential Smoothing Approach and Decision Support System. International Journal of Mechanical Computational and Manufacturing Research, 12(2), 46-52.

Sihotang, J., Alesha, A., Batubara, J., Gorat, S. E., & Panjaitan, F. S. (2022). A hybrid approach for adaptive fuzzy network partitioning and rule generation using rough set theory: Improving data-driven decision making through accurate and interpretable rules. International Journal of Enterprise Modelling, 16(1), 12-22.

Sihotang, J., Panjaitan, E. S., & Yunis, R. (2020). Evaluation of Information Technology Governance by Using CobIT 5 Framework at Higher Education. Jurnal Mantik, 4(3), 2194-2203.

T. M. Phuong and N. D. Phuong, “Graph-based context-aware collaborative filtering,” Expert Syst. Appl., vol. 126, no. 15, pp. 9–19, 2019, doi: https://doi.org/10.1016/j.eswa.2019.02.015.

V.-A. Darvariu, S. Hailes, and M. Musolesi, “Graph Neural Modeling of Network Flows,” 2022. doi: https://doi.org/10.48550/arXiv.2209.05208.

X. Zhu and J. Lafferty, “Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning,” in Proceedings of the 22nd international conference on Machine learning, 2005, pp. 1052–1059. doi: https://doi.org/10.1145/1102351.1102484.

Y. Peng, B. Choi, and J. Xu, “Graph learning for combinatorial optimization: a survey of state-of-the-art,” Data Sci. Eng., vol. 6, no. 2, pp. 119–141, 2021, doi: https://doi.org/10.1007/s41019-021-00155-3.

Y. Tian et al., “Evolutionary large-scale multi-objective optimization: A survey,” ACM Comput. Surv., vol. 54, no. 8, pp. 1–34, 2021, doi: https://doi.org/10.1145/3470971.

Downloads

Published

2024-05-30

How to Cite

Sihotang, H. T., Riandari, F., & Sihotang , J. (2024). Graph-based Exploration for Mining and Optimization of Yields (GEMOY Method). Jurnal Teknik Informatika C.I.T Medicom, 16(2), 70–81. https://doi.org/10.35335/cit.Vol16.2024.777.pp70-81