Comparison Of Jenkins Box Method And Multiple Linier Regression In Predicting The Noble Metal Price

##plugins.themes.academic_pro.article.main##

Bayu Gunara
Yennimar Yennimar

Abstract

Nowadays, gold investment practitioners generally use instinct and guess in investing in gold. This is certainly a problem because it has a high error margin. To solve these problems, the forecasting process can be carried out.To be able to forecast gold prices with low error rates, various studies have been conducted. The Box-Jenkins method performs better than other methods in predicting the price of gold, because the Box-Jenkins method applies forecasting by relying on the historical statistics of gold prices beforehand. The Box-Jenkins method is an iterative of choosing the best model for the stationary series of a group of linear time series models called the ARIMA (Autoregressive Integrated Moving Average) model. However, the ARIMA method is a complex method and is not easy to use and requires a long execution time to obtain forecasting results with a high degree of accuracy. To improve the accuracy of prediction results from ARIMA, the ARIMA method can be combined with the multiple regression method into a hybrid method. The Multiple Linear Regression Method is a mathematical technique that minimizes the difference between the actual value and the predicted value.The results of this study are an application of forecasting the price of gold using the ARIMA method and Multiple Linear Regression. The application also provides a facility to test the results of the methods used. Based on the results of testing the accuracy of the prediction results from the hybrid method with 30 data = 48%, 60 data = 40%, and 118 data = 40.81%.

##plugins.themes.academic_pro.article.details##

How to Cite
Gunara, B., & Yennimar , Y. (2019). Comparison Of Jenkins Box Method And Multiple Linier Regression In Predicting The Noble Metal Price. Jurnal Teknik Informatika C.I.T Medicom, 11(2, Septemb), 66-73. Retrieved from https://medikom.iocspublisher.org/index.php/JTI/article/view/15

References

[1] Bodie Z, Kane A, Marcus A. J. (2009). Investments: eight edition. McGraw Hill. USA.
[2] Ismail, Z., A. Yahya dan A. Shabri. (2009). Forecasting Gold Prices Using Multiple Linear Regression Method, American Journal of Applied Sciences 6 (8): 1509-1514, ISSN 1546-9239, Science Publications.
[3] Kitco. (2017). Kitco.com, Gold Prices History.
[4] Mohamad Heykal, Erlin. (2011). Analisis Kinerja Perdagangan Kontrak Berjangka Logam Mulia pada Periode Oktober 2009 - Desember 2009, BINUS BUSINESS REVIEW Vol. 2 No. 1 Mei 2011: 181-191.
[5] Puji Catur Siswipraptini, Sri Rahayu. (2016). Aplikasi Simulasi dan Pemodelan Menggunakan Metode Linier Trend pada CV. Bina Multi Barokah, P-ISSN 2085-4315 / E-ISSN 2502-8332.
[6] Srivastava, M., D. Badal, R. K. Jain. (2010). Regression and ARIMA Hybrid Model for New Bug Prediction, Madhur Srivastava et al. / (IJCSE) International Journal on Computer Science and Engineering Vol. 02, No. 08, 2010, 2622-2628.
[7] Yuan, J., F. Z. Guang, Q. M . Fang. (2012). Coal Calorific Value Prediction Based on Projection Pursuit Principle, TELKOMNIKA Indonesian Journal of Electrical Engineering Vol.10, No.6, October 2012, pp. 1287~1292.
[8] Anita. (2015). Analisis Komparasi Investasi Logam Mulia Emas Dengan Saham Perusahaan Pertambangan Di Bursa Efek Indonesia 2010-2014. Jurnal Bisnis dan Manajemen. Volume 5 No.2.
[9] Tanti Octavia,Yulia, Lydia, Aplikasi Simulasi dan Pemodelan Menggunakan Metode Linier Trend pada CV. Bina Multi Barokah,Seminar Nasional Informatika 2013 (semnasIF 2013), UPN ”Veteran” Yogyakarta 2013.
[10] Chandra, A. (2017). Estimasi Trip Frequency dengan Menggunakan Model Multiple Linear Regression, Jurnal Metris 18 (2017) 25–28,