Main Article Content

Ahmad
Ucok Darussalam
Benrahman B

Abstract

The eye is one of the organs of the body that is very important for humans, so it must be kept in good health, but as humans age and the unhealthy lifestyle of many people in Indonesia experience problems with their eyes. Based on the existing problems this study discusses the application of expert systems to diagnose eye diseases. The data used for the study consisted of 22 symptoms and 5 eye diseases. Expert system that was built using the Naïve Bayes method. There are two stages of work from this application. First, the system asks the patient to choose the symptoms they are experiencing. Secondly, the system will automatically display the diagnosis results of the eye disease suffered by the patient through the calculation of Naïve Bayes. This system has advantages compared to the existing system in the reference journal, namely in the design of the symptom page display, making it easier for users to answer according to the symptoms felt. The results of subsequent system diagnoses are compared with the results of diagnoses from actual experts. The system trial used data of 15 eye disease patients. From the experimental results, the percentage of diagnostic suitability of 86%.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ahmad, Darussalam, U. ., & B, B. (2020). Web-Based Expert System for Diagnosing Human Eye Disease Using the Naïve Bayes Method. Jurnal Teknik Informatika C.I.T Medicom, 12(1), 16–25. https://doi.org/10.35335/cit.v12i1, March.18
References
[1] Wahyudi setiawan dan Sofie Ratnasari. " Sistem Pakar Diagnosis Penyakit Mata Menggunakan Naïve Bayes Classifier" Seminar Nasional Sains dan Teknologi (2014):2407-1846G. Smith, “Paper Title” (to be published).
[2] Fatimah Ibrahim, Juliana Basheer Ali, Fathilah Jaais, dan Mohd Nasir Taib. " Expert System for Early Diagnosis of Eye Diseases Infecting the Malaysian Population." IEEE Catalogue No. 01 CH37239 (2001).
[3] Aditiawarman, Helfie Nasution dan Tursina. “Sistem Pakar Pendeteksi Penyakit Mata Berbasis Android” Jurnal Sistem dan Teknologi Informasi (JUSTIN) Vol. 5, No. 2, (2017).
[4] Indra Wahyu Trianan, Diema Hernyka Satyareni dan Erliyah Nurul Jannah “Rancang Bangun Sistem Pakar Diagonosis Penyakit Mata Dengan Metode Teorema Bayes” Jurnal Pengembangan Teknologi Informasi dan Informatika,No.4(2018):1492-1500.
[5] Yogi Permana, I Gede Pesek Suta Wijaya dan Fitri Bimantoro “Sistem Pakar Diagnosa Penyakit Mata Menggunakan Metode Certainty Factor Berbasis Android.” J-COSINE, Vol. 1, No. 1, Desember (2017) :2541-0806.
[6] Putu Ananta Dama Putra, I Ketut Adi Purnawan dan Desy Purnami Singgih Putri “Sistem Pakar Diagnosa Penyakit Mata dengan Fuzzy Logic dan Naïve Bayes.” MERPATI (Menara Penelitian Akademika Teknologi Informasi) Vol. 6, No. 1, April (2018): 2252-3006.
[7] Kabari, LG and Nwachukwu, EO. (2012 Dec 5). Neural Networks and Decision Trees For Eye Diseases Diagnosis [online]. Available: http://dx.doi.org/10.5772/51380.
[8] Cut Putri Ariani, Direktorat Pencegahan dan Pengendalian Penyakit Tidak Menular .2019 “Buku Pintar Kader POSBINDU” Jakarta : Kementrian Kesehatan Republik Indonesia.
[9] Hartono, Aditya Tri Hernowo, Bagian Ilmu Penyakit Mata Fakultas Kedokteran Universitas Gadjah Mada. 2007 “Ilmu Kesehatan Mata” Yogyakarta : Universitas Gadjah Mada
[10] Sidarta Ilyas, Tanzil Muzakkir. “Sari Ilmu Penyakit Mata”, Fakultas Kedokteran Universitas Indonesia. 1981. Jakarta.
[11] Susanto, Tony Dwi. 2018. “Bandwith dan Menghitung Kebtuhannya? Cara Sederhana Memahaminya”.https://egovernmentindonesia.wordpress.com/2018/05/19/bandwidth-menghitung-kebutuhannya-cara-sederhana-memahaminya/ (Diakses: 26 Desember 2019).