Main Article Content

Ahmad Agung Zefi Syahputra
Annisa Dwi Atika
Muhammad Adam Aslamsyah
Meida Cahyo Untoro
Winda Yulita

Abstract

The use of smartphones in the industrial era 4.0 had become more frequent and widespread in various circles of Indonesian society. In addition, the COVID-19 pandemic that had not end yet also made high school and college students obliged to carry out online learning. This research aimed to cluster the price from smartphones using the specifications of the smartphone. K-Means Clustering was used as a method in this research. This algorithm was a data mining algorithm with unsupervised learning as data grouping and could group the price of a smartphone into several clusters based on the similarity of the characteristics by one data with other data, which is memory_size and best_price. The results of this research indicated that the right clustering of smartphone prices was within 3 different clusters, which was cluster 0 has centroid of Rp2.000.000,00, cluster 1 has centroid of Rp18.000.000,00, and cluster 2 has centroid of Rp9.000.000,00. The results of the evaluation used a confusion matrix, summary of prediction result, indicated that the clustering process had 100% of accuracy that could be seen on the table which showed the results of clustering. The conclusion from this research was that K-Means Clustering could form clusters in determining the price of a smartphone in relation to the specifications used as the attribute determining the price cluster for a smartphone.

Downloads

Download data is not yet available.

Article Details

How to Cite
Syahputra, A. A. Z. ., Atika, A. D. ., Aslamsyah, M. A. ., Untoro, M. C. ., & Yulita, W. . (2021). Smartphone Price Grouping by Specifications using K-Means Clustering Method. Jurnal Teknik Informatika C.I.T Medicom, 13(2), 64–74. https://doi.org/10.35335/cit.Vol13.2021.98.pp59-68
References

N. R, “PEMANFAATAN INTERNET SEBAGAI MEDIA E-LEARNING UNTUK SISWA DAN GURU SMPN 3 TARAKAN,” J. Pengabdi.
Masy. Borneo, vol. 2, no. 2, pp. 21–24, 2018, doi: 10.35334/jpmb.v2i2.518.

APJII, “Laporan Survei Internet APJII 2019 – 2020,” Asos. Penyelenggara Jasa Internet Indones., pp. 1–146, 2020, [Online]. Available: https://apjii.or.id/survei.

BPS, “Hasil Sensus Penduduk 2020,” Sensus Pendud. 2020, vol. 6, pp. 1–18, 2020.

K. Pendidikan dan Kebudayaan, “Kementerian Pendidikan dan Kebudayaan » Republik Indonesia.” https://www.kemdikbud.go.id/main/blog/2020/05/kemendikbud-terbitkan-pedoman-penyelenggaraan-belajar-dari-rumah (accessed Apr. 09, 2021).

L. D. Herliandry, N. Nurhasanah, M. E. Suban, and H. Kuswanto, “Pembelajaran Pada Masa Pandemi Covid-19,” JTP - J. Teknol. Pendidik., vol. 22, no. 1, pp. 65–70, 2020, doi: 10.21009/jtp.v22i1.15286.

Y. Pusparisa, “Pandemi Covid-19, Puluhan Juta Murid Belajar di Rumah,” Katadata.Co.Id, no. April, p. 2020, 2020, [Online]. Available: https://databoks.katadata.co.id/datapublish/2020/05/05/pandemi-covid-19-puluhan-juta-siswa-belajar-di-rumah

L. H. A. Mana, “RESPON GURU BAHASA INDONESIA TERHADAP PEMBELAJARAN DARING DI ERA COVID-19,” JIRA J. Inov. dan Ris. Akad., vol. 2, no. 1, pp. 93–106, 2021, doi: 10.47387/jira.v2i1.76.

Z. N, Nurmayanti, and H. Ferdiansyah, “Efektifitas Media Pembelajaran Daring di masa Pandemi Covid-19,” Edumaspul J. Pendidik., vol. 5, no. 1, pp. 71–77, 2021.

Artem Pozdniakov, “Mobile Phones Data | Kaggle,” Feb. 05, 2021. https://www.kaggle.com/artempozdniakov/ukrainian-market-mobile-phones-data (accessed Jun. 10, 2021).

P. Arora, S. Srivastava, and B. Garg, “Mobile price prediction using weka 1,” vol. 5, no. 4, pp. 330–333, 2020.

W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain Informatics J., vol. 5, no. 2, pp. 45–51, 2020, doi: 10.21111/fij.v5i2.4449.

Fatkhuroji, S. Santosa, and R. Anggi Pramunendar, “PREDIKSI HARGA KEDELAI LOKAL DAN KEDELAI IMPOR DENGAN METODE SUPPORT VECTOR MACHINE BERBASIS FORWARD SELECTION,” J. Teknol. Inf., vol. 15, no. 1, pp. 61–76, 2019.

P. Indrayati Sijabat, Yuhandri, G. Widi Nurcahyo, and A. Sindar, “Algoritma Backpropagation Prediksi Harga Komoditi terhadap Karakteristik Konsumen Produk Kopi Lokal Nasional,” J. Teknol. Inf. dan Komun. Digit. Zo., vol. 11, no. 1, pp. 96–107, 2020, doi: 10.31849/digitalzone.v11i1.3880.

J. Han, M. Kamber, and J. Pei, “Third Edition : Data Mining Concepts and Techniques,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2012, [Online]. Available: http://library.books24x7.com/toc.aspx?bkid=44712.

S. Handoko, F. Fauziah, and E. T. E. Handayani, “Implementasi Data Mining Untuk Menentukan Tingkat Penjualan Paket Data Telkomsel Menggunakan Metode K-Means Clustering,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 1, pp. 76–88, 2020, doi: 10.35760/tr.2020.v25i1.2677.

M. Cahyanti, M. R. D. Septian, E. R. Swedia, and R. A. Salim, “PENGELOMPOKKAN CITRA KENDARAAN (MOTOR DAN MOBIL) BERDASARKAN BENTUK MENGGUNAKAN ALGORITMA K-MEANS,” Sebatik, vol. 22, no. 2, pp. 153–160, 2018, doi: 10.46984/sebatik.v22i2.322.

P.-N. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining,” pp. 51–56, 2006, doi: 10.1016/0022-4405(81)90007-8.

M. C. Untoro, L. Anggraini, M. Andini, H. Retnosari, and M. A. Nasrulloh, “Penerapan metode k-means clustering data COVID-19 di Provinsi Jakarta,” Teknologi, vol. 11, no. 2, pp. 59–68, 2021, doi: 10.26594/teknologi.v11i2.2323.

Intan Trivena Maria Daeng, N. . Mewengkang, and E. R. Kalesaran, “Penggunaan Smartphone Dalam Menunjang Aktivitas Perkuliahan Oleh Mahasiswa Fispol Unsrat Manado,” Acta Diurna, vol. 6, no. 1, pp. 1–15, 2017.

E. S. Pandia, , N., and , N., “Pengaruh Penggunaan Smartphone Sebagai Perangkat Pembelajaran Terhadap Pendidikan Karakter Siswa,” BEST J. (Biology Educ. Sains Technol., vol. 3, no. 2, pp. 44–50, 2020, doi: 10.30743/best.v3i2.2805.

E. M. - AMIK BSI Yogyakarta, “Komparasi Metode Clustering K-Means Dan K-Medoids Dengan Model Fuzzy Rfm Untuk Pengelompokan Pelanggan,” Evolusi J. Sains dan Manaj., vol. 6, no. 2, 2018, doi: 10.31294/evolusi.v6i2.4600.

R. Yuliani, “Penerapan Data Mining untuk Mengcluster Data Penduduk Miskin Menggunakan Algoritma K- Means di Dusun Bagik Endep Sukamulia Timur,” vol. 4, no. 1, pp. 39–50, 2021.

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

Adnan, M. M. J., Hemmje, M. L., & Kaufmann, M. A. (2021). Social Media Mining to Study Social User Group by Visualizing Tweet Clusters using Word2Vec, PCA and K-Means. In BIRDS+ WEPIR@ CHIIR (pp. 40-51).

Li, Q., Lin, H., Tang, C., Wei, X., Peng, Z., Ma, X., & Chen, T. (2021). Exploring the” Double-Edged Sword” Effect of Auto-Insight Recommendation in Exploratory Data Analysis.

Kumar, N., Yadav, S. K., & Yadav, D. S. (2021). An Approach for Documents Clustering Using K-Means Algorithm. In Innovations in Information and Communication Technologies (IICT-2020) (pp. 453-460). Springer, Cham.